THE GRAPH ACCESSIBILITY PROBLEM (GAP)

- GAP: Given a directed graph $G = (V, E)$ and two vertices $u, v \in V$, determine whether there exists a path from u to v

 - GAP \in NL:
 - Algorithm N-GAP($G = (V, E), u, v$) returns \top/\bot:
 1. $x \leftarrow u$
 2. while $x \neq v$ do
 1. nondeterministically guess a value $y \in V$
 2. if $(x, y) \notin E$ then return \bot
 3. $x \leftarrow y$
 3. return \top

 - GAP \in DSPACE($\log^2 n$):
 - Algorithm D-GAP($G = (V, E), u, v$) returns \top/\bot:
 1. return PATH($G, u, v, |V|$)
 - Algorithm PATH($G = (V, E), i, j, k$) returns \top/\bot:
 1. if $k = 0$ then return $i = j$ else if $k = 1$ then return $(i, j) \in E$
 2. else return $\exists l \in V : \text{PATH}(i, l, \lfloor k/2 \rfloor) \wedge \text{PATH}(l, j, \lfloor k/2 \rfloor)$
 3. $O(\log n)$ recursion depth and $O(\log n)$ storage per level $= O(\log^2 n)$ space
 4. GAP can be solved in parallel in $O(\log^2 n)$ time (see hypercube algorithm)

SPACE-BOUNDED COMPUTATIONS

- A Turing machine M is $s(n)$-space bounded, $s : \mathbb{N} \rightarrow \mathbb{N}$ if
 1. M is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 2. The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 3. A configuration of M is a tuple $\{(q, w, uav, \alpha)\}$ where q is the current state, w is the (read only) input, uav is the content of the work tape, and α is the output produced so far
 4. There is no configuration (q, w, uav, α) such that $(s, w, \epsilon, e) \vdash_M (q, w, uav, \alpha)$ and $|uav| > s(|w|)$

 - DSPACE($s(n)$) $/$ NSPACE($s(n)$) \rightarrow the class of all the decision problems solved by $s(n)$-space bounded, deterministic/nondeterministic Turing machines

 - Shorthand: $L = \text{DSPACE}(\log n)$, $NL = \text{NSPACE}(\log n)$, $\text{POLYLOGSPACE} = \bigcup_{k \geq 1} \text{DSPACE}(\log^k n) = \text{DSPACE}(\log^{O(1)} n)$

 - Note in passing: $\text{DSPACE}(s(n)) = \text{DSPACE}(s(n)/c)$ for all $c \in \mathbb{N}$

 - $L \subseteq NL \subseteq \mathcal{P}$; widely believed (but not proven) that all the inclusions are strict

DETERMINISTIC VS NONDETERMINISTIC SPACE

Theorem (Savitch’s theorem)

$\text{NSPACE}(s(n)) \subseteq \text{DSPACE}(s(n)^2)$ for most useful functions $s(n) = \Omega(\log n)$, including polynomials and poly-logarithms (space-constructible functions)

- Let M be an $s(n)$-space bounded Turing machine
- Size of configuration graph: $2^{O(s(n))}$ vertices
- Use GAP to determine whether the accepting configuration is accessible from the initial configuration $\rightarrow (\log 2^{O(s(n))})^2 = O(s(n)^2)$ space

Corollary

- $NL \subseteq \text{DSPACE}(O(\log^2 n))$
- $\text{NSPACE}(\log^{O(1)} n) = \text{DSPACE}(\log^{O(1)} n) = \text{POLYLOGSPACE}$
- $\text{DSPACE}(n^{O(1)}) = \text{NSPACE}(n^{O(1)}) = \text{PSPACE}$

- Known that $\mathcal{P} \neq \text{POLYLOGSPACE}$; conjectured that $\mathcal{P} \not\subseteq \text{POLYLOGSPACE}$ and $\text{POLYLOGSPACE} \not\subseteq \mathcal{P}$
LOG-SPACE COMPLETENESS

- A language A is log-space reducible to language B ($A \leq_{log} B$) if there exists a function τ computable in logarithmic space such that $x \in A$ if $\tau(x) \in B$.

- Let C be a class of languages:
 - B is log-space hard for C if $A \leq_{log} B$ for all $A \in C$.
 - B is log-space complete for C if B is log-space hard for C and $B \in C$.
 - P-complete stands for "log-space complete for P".

- How can we conclude that if a problem is P-complete and also in POLYLOGSPACE then $P \subseteq \text{POLYLOGSPACE}$?
 - Naive approach: given input x for some problem $A \in P$, use the log-space machine M_ϵ that computes the log-space reduction from A to a P-complete problem B, then run the machine M_ϵ (that accepts B) on $M_\epsilon(x)$.
 - This approach fails (not enough space to store $M_\epsilon(x)$).
 - However, we can modify the Turing machine M_ϵ to obtain M'_ϵ such that $M'_\epsilon(x, i)$ is the i-th bit of $M_\epsilon(x)$.
 - Every transitions of M_ϵ depends on a single input bit.
 - So instead of computing all the input $M_\epsilon(x)$ in advance, we use M'_ϵ on demand to obtain the particular bit needed by the current transition of M_ϵ.

THE PARALLEL COMPUTATION THESIS

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space used by a sequential machine.

- Technically a conjecture rather than theorem because of the presence of "reasonable".
 - A "reasonable" parallel machine usually features restrictions on word size, instruction set, and parallelism.
 - Powerful theoretical tool.

Corollary

All P-complete problems are inherently sequential unless $P \subseteq \text{POLYLOGSPACE}$.

- It is likely that no P-complete problem is in POLYLOGSPACE.
- Therefore according to the parallel computation thesis they cannot be solved in parallel in $O(\log^{O(1)} n)$ time.
- The only possibility remaining is that they can be solved in parallel in polynomial time \to no better than solving them sequentially.

THE PARALLEL COMPUTATION THESIS (CONT’D)

“REASONABLE” PARALLEL MODELS

- Restrictions on the instruction set:
 - One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where $t(n)$ is the running time of the parallel machine.
 - One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above).

- Restrictions on the number of processors:
 - Most people regard a parallel machine as feasible if the number of processors is $n^{O(1)}$ (small machine) and the running time is $\log^{O(1)} n$ (fast machine).
 - However, the parallel computation thesis holds even if the number of processors is $2^{O(t(n))}$ or even $2^{O(t(n)^{O(1)})}$.

- Restrictions on the word size:
 - Normally the word size is $t(n)^{O(1)}$ though in practice the tighter restriction of $O(\log n)$ size is used for simplicity.