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Abstract

In this thesis we take a group graded ring, R, that has unity, and show two equivalent
conditions for it to be graded. Then, using the dual of the group ring, k[G], denoted
k[G]*, and a subalgebra of it called P, we form a new ring called the smash product,
written R# Pg. We do this for both finite and infinite groups. In the infinite case, the
smash product has no unity, so we adjoin a 1 using a method similar to the Dorroh
extension.

Next we introduce the ideas of radicals of rings with some examples. Talking
about graded rings, we introduce graded radicals. With this theory, we are able to
characterize certain radicals of the smash product. Saorin gave a characterization of
the smash product with a 1 adjoined for the Jacobson radical. Here we will do so for
all hereditary radicals, thus making Saorin’s result a corollary.

vi



Chapter 1

Preliminaries

In this thesis, we examine radicals of group graded rings, and their relationship to the
radical of the smash product and the radical of the smash product with a 1 adjoined.

We start by first reviewing elementary terms in ring theory, and from there move
on to defining the smash product of a graded ring.

Throughout this thesis, we will be considering rings over a commutative ring with
unity, denoted k. Since we are working over a commutative ring with unity, £, we
require our ring, R, to be a left and right k-module with the left and right actions
being the same. This is possible, since at the very least, every ring is a Z-module.
All maps are assumed to be k-linear, unless it is otherwise specified.

1.1 Modules and Algebras

Definition 1.1.1 Let R be a ring. We say M is a left R-module if M s an abelian
group under addition and there is a map from R x M — M denoted (r,m) — rm
such that for all r,s € R and m,n € M we have

1. rim+n)=rm+rn
2. (r+s)ym=rm+sm
3. (rs)m =r(sm)
4. RM =M
A right R-module is defined in a similar manner. We sometimes say that M is a
module over the ring R. Unless specified otherwise, all modules will be considered to

be left modules. We also assume that all modules, M, are left and right k-modules
with Im = ml for all m € M and [ € k.

Now if M is an R-module, and there is a set of elements, {m; € M|i € I}, such
that every element m € M can be written as unique sum of the form m = Y ,c; rim;,
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where 7; € R, and only a finite number of the r;’s are non-zero, we say that M is a
free R-module, and we call the set of elements a basis for the module.

Example 1.1.2 For any ring R, the matrix ring M&(R) is a left R-module. M (R)
denotes the ring of matrices indexed by some group, GG, with a finite number of entries
from the ring R. The action of R on this module is as follows: for all » € R and all
A € M (R)
(rA)(g,h) = r(A(g,h))

where g, h are elements of G. This action satisfies the conditions of Definition 1.1.1.
We can also define the action of R on the right of M{(R) similarly. Thus Mg (R)
is both a left and right R-module. As well, M (R) is a free R-module with a basis
{e(g,h)|g, h € G}, where e(g, h) is the matrix with a 1 in the (g, h)™ position and
zeros elsewhere. 1

Definition 1.1.3 If M 1is both a left R-module and a right S-module, and satisfies
the condition that (rm)s = r(ms) for allr € R, s € S and m € M, then we say
that M is an R — S-bimodule. If R = S, then we abbreviate by saying that M is an
R-bimodule.

Let M be an R-module, and let S;,7 € I be submodules. Suppose each m € M
can be written uniquely as a finite sum of elements, one from each of the S;. Then
we say that M is the direct sum of S;,7 € I, and write this as M = @, S;. We
can write each element m € M as m = s;, + s;, + S;3 + - -~ where s;; € S;;, and only
finitely many of them are non-zero. By the uniqueness condition above, the S; are
disjoint except for the 0 element.

Definition 1.1.4 Let A be a right R-module and B a left R-module. The tensor
product, AQpgr B, is the free k-module on the abelian group A x B where A X B is the
Cartesian product mod H, and H is the subgroup of A x B generated by elements of
the form

(a1 + ag,b) — (a1,b0) — (ag,b)

(a, b1 + bg) — (a,b1) — (a, by)
(ar,b) — (a,rb)

for all a; € A, b; € B, and r € R. The class of (a,b) € A x B in this quotient is
denoted a Qr b and a general element of AQpr B is a finite sum of such elements. If
k C R, the tensor product, AQgr B, s a right and left k-module by

(a@b) =la@b=al@b=a@Qlb=0a@bl = (a@b).
R R R R R R
The tensor @ without subscript will mean @y,
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Proposition 1.1.5 For a right k-module A, AQk = A. For a left k-module A,
kRAXA.

Proof: Let ¢ map A X k to A by ¢(X(as;,l;)) = Y a;l;. Since ¢ clearly maps
any element of the subgroup H of A x k from Definition 1.1.4 to 0, ¢ defines a
map from AQkL to A. Let n : A — AQk be defined by n(a) = a®1. Then
nd(>Xa; @) = (X ail;)) = Xali @1 = Y a; ®1;, and ¢n(a) = ¢(a®1) = a, so
ARk = A. Similarly, k@ A = A. O

Let us now use modules to define a new object. To start, let A be a k-module
together with two maps, multiplication M : AQ A — A and the unit map u : k —
A, such that the following diagrams commute:

1. Associativity

ARARA oM AR A
MRI M
AR A i A
2. Unitary Property
k@Al 4oa4 19U 4ok
M
A

(k® A — A and AQk — A are the isomorphisms given in Proposition
1.1.5.)

Definition 1.1.6 We say that a k-module, A, is an k-algebra if it satisfies the above
conditions. The algebra is sometimes written as (A, M, u), or if more than one algebra
are being considered, (A, Ma,uy4). Unless otherwise stated, an algebra is considered
to be a k-algebra.

Definition 1.1.7 If A and B are algebras, and f : A — B is a k-linear map, then
f 1s an algebra map if



1. f(ab) = f(a)f(b)
2. f(ua(l)) = up(lx)

Recall that we are assuming that all rings R are k-modules.
Proposition 1.1.8 If R is a ring with unity, then R is a k-algebra.

Proof: Let us define the map M to be ring multiplication, and let u(n) = nlg for any
n € k, using module multiplication. Then the associative property holds because ring
multiplication is associative. For the unitary property, note that M(u @ I)(n@r) =
nr, which is the result of the maps kQ R — R and R @k — R. Therefore R is a
k-algebra. O

Proposition 1.1.9 Let A and B be k-algebras and let MA®B AR BRARYB —
AQ® B be defined by MA®B(CL® bR c®d) = ac@bd, and extended by linearity, and
let uygp:k — AQ B be defined by uy g p(l) = lua(l) ®up(1). Then AQ B is a
k-algebra.

Proof: For associativity,

(@®b)(c®d)(e® f))

(a ®b)(ce ® df)

= a(ce) ® b(df)
(ac)e @(bd) f
(a0®bd)(€®f)

= ((a®b)(c®d))(e® f)

and the unitary property follows directly from the definition of u AR B- So the tensor
product of two k-algebras is again a k-algebra. O

1.2 Group-Graded Rings

Definition 1.2.1 We say R is a G-graded ring, where G is a group, if there is a
family of additive subgroups {R,4|g € G} of R such that

1. R - ®QEG Rg.
2. RgRy, C Ry, for all g,h € G



The elements of Ry are denoted r4, and are called homogeneous elements of R. A
ring R is called strongly G-graded if RgR, = Ry for all g, h € G.

A subring, S, of a G-graded ring R, with S = @(S N Ry) is a G-graded subring
of R.

Example 1.2.2 For any ring R, we can consider the following two gradings. First,
we can grade R by the trivial group {e}. The other grading, called the trivial grading
of R by a group G is as follows: R, = R and Ry, = 0 for all g # e. The trivial grading
does not depend on the group, so for any group, GG, and any ring, R, we can consider
R to be a G-graded ring. T

Proposition 1.2.3 Let R be a G-graded ring with unity. Then the following are
equivalent.

1. RyRy, = Ry, for all g,h € G; that is, R is strongly graded.

2. RyRy1» = R, for all g € G, where e is the identity in G

Proof: That the first implies the second is clear. The reverse implication is not so
obvious. Since R is graded, we have RyR) C Ry, so all that is required to show is
that each ry, € Ry, is contained in RyR,. Now the 1 € R must lie in R, = RjR,-1,
since 1r, = ry, and if 1 was not in R,, this could not happen. Thus we know that

1 = Y7, s(i)t(¢) for some s(i) € R, and some t(i) € R,~1. Now, let us multiply
this on the right by ry,. This gives > s(¢)t(i)rgn. Since t(i)rg, € Ry, for all 4, the
statement is proved. O

Example 1.2.4 Let R be a ring, and let R[z] denote the ring of polynomials. In this
ring, the operations are defined as follows:

max(m,n)

m n
dSor'+) st = Y (r+ si)a (1.1)
i=0 j=0 i—0
and
m on . m+n =z
Zn-xz Z 5@’ = Z Z(risz_i)xz (1.2)
=0 =0 2=0 i=0

For any ring R, R[z] is graded by Z. The grading is as follows: for n < 0,
R|z], = {0}, and for n > 0, R[z|, = {ra™|r € R}. A homogeneous element of R[x]
looks like rz™. For example, in Z[z], 5z% is homogeneous but 22 + 2z + 1 is not. Note
that R[z| is not strongly graded, since R,R_, = 0 for all non-zero n. 1



Example 1.2.5 Another example of a graded ring is the group ring. Let R be any
ring and let G be any group. Then the group ring, denoted R|[G], is the free left
R-module with basis {uy|g € G} and multiplication defined by (rug)(sus) = rsug.
We usually write g to denote the basis element u,. In other wo rds, we can write the
group ring as follows:

=@ Rg={>_r(9)9lr(9) € R}.

geG geq

The binary operations are given as

Y or(9)g+ Y s(hyh =" (r(g) +s(9))g (1.3)

geG heG geG

and

>_r(9)g 2 s(Mh =3 (> (r(a)s(b)))g (1.4)

9eG heG geG ab=g

It is easy to see that R[G] is a G-graded ring, with R[G], = Rg. Note that
R[G] =2 RQK[G] if R is a k-algebra.

If either the ring, R, or the group, G, is not commutative, the group ring will
not be commutative. If R is a ring with unity, then the group ring has unity, with
1gje) = 1ge. Thus by Proposition 1.1.8, the group ring would be a k-algebra. Let M
and u be the k-linear maps defined by M (g ® h) = (gh) and u(1) = e for g,h € G.

Note that the polynomial ring, R[] is isomorphic to a subring of R[Z]. T
Proposition 1.2.6 If RR = R, R|G] is strongly G-graded.

Proof: In Example 1.2.5, we stated that R[G] is G-graded. Thus, all that we are
required to show is R(gh) C RgRh, since inclusion in the other direction is given by
the grading. Let r(gh) € R(gh). Since RR = R, there are elements e;, f; € R such
that Y e;f; = r. Thus we have that > (e;g)(f:h) = r(gh). O

Definition 1.2.7 Let A be a k-module. Then the set of all k-linear module homo-
morphisms from A to k forms a k-module. For two homomorphism ¢,v, ¢+ ¢(a) =
o(a) +¥(a), and lp(a) = ¢(la), for alla € A and | € k. This module is denoted A*,
or Homy (A, k), and is called the dual of A.

Example 1.2.8 Let G be a group and k[G] be the group ring, which is a k-algebra.
The dual of k£[G], which is denoted k[G]*, is also a k-algebra. Define the multipli-

cation map My as M- (6@ )(g) = d(9)(g), where ¢, € k[G]* and g € G.
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This map is extended by linearity to finite sums in k[G]. For the unit map, let
ugcy (1) (XCgea m(9)g) = nXgeq m(g)-

Now multiplication is clearly associative since the ring £ is associative. The
unitary property is true from the definition of the unit map. Therefore k[G]* is a
k-algebra.

We consider the subalgebra of k[G]* generated by the projection maps p,, where
Pr(Xgecn(9)g) = n(h). We will denote this subring as Pg. For a finite group,
Pg = k[G]* and has multiplicative identity > ,c;p,- If G is infinite, the inclusion
Pg C k[G]* is proper and Pg has no multiplicative identity.

The subalgebra Pg will play a key role in later chapters. 1

Definition 1.2.9 Let R be a ring, and G be a group. We say that G acts as a group
of automorphisms on R if there is a homomorphism from G into the group of ring
automorphisms of R.

Example 1.2.10 Let R be the set of real numbers. Then R* is a ring with addition
and multiplication performed component-wise; that is, (r1, 79, 73,74) + (51, S, S3, S4) =
(r1+s1, 9+ 89, r3+ 83, 74+ 84), and (r1, 7o, 73,74)(S1, S2, S3, S4) = (7151, 7252, 7353, T'4S4)-
R* is the set of linear combinations of {eg, e, €3, 3} with coefficients in R, where e;
has 1 in the i** position and 0 elsewhere. Consider the maps ¢; : R* — R*,
i =0,1,2,3 given by ¢i(e;) = et;) with the index addition performed in Z4. It is
easily shown that these maps are ring automorphisms.

These maps form a group under composition. This group is isomorphic to Z4. So
we can think of Z, acting on R* as a group of automorphisms. 1

Example 1.2.11 If G acts on R as a group of automorphisms, we can consider
another algebraic structure similar to the group ring. By slightly altering the multi-
plication rule for the group ring, we can form what is known as a skew group ring.
The new multiplication is defined by (rg)(sh) = (rg(s))(gh). This multiplication is
associative, as will be shown:

(rg)((sh)(ti)) =

I
NN N SN N
=
<



1.3 Ideals

An ideal, I, of a ring, R, is a subring with the additional property that for any r € R,
rI C I and Ir C I. If only one of the inclusions hold, then we say that I is a left, or
right, ideal, depending on which side the elements of R are multiplied on. Throughout
this discussion, ideals will be two-sided unless otherwise stated. Two-sided ideals are
the kernels of ring homomorphisms.

We say an ideal, I, is graded if I is a graded subring of the ring, R, Rl C Iy,
and I, Ry C Ip,.

Example 1.3.1 An ideal, I, of a graded ring, R, may not be a graded subring. For
example, consider the ring of polynomials, R = k[z]| from Example 1.2.4 and the ideal
I=(x+1)={f(z)(x+1)|f(z) € k[z]}. The ring, R, is graded by the integers, but
the ideal, I, is not a graded subring since x + 1 is in / but neither x nor 1 is. For
such ideals, I, we can consider the largest graded ideal that is contained in /. This
is equal to @,cq I N Ry, and is denoted Ig. In this case, (z + 1)z = 0. 1

Definition 1.3.2 We say an ideal, I # R, is mazimal in R, if for any ideal J such
that I C J and I # J, then J = R.

Definition 1.3.3 The intersection of all ideals of R which contain a given nonempty
set of elements K, is called the ideal generated by K, and is denoted (K) [12, Defi-
nition 2.3].

Proposition 1.3.4 For an ideal P of a ring R the following are equivalent:

1. if A, B are ideals of R and AB C P, then either AC P or B C P.
2. if aRb C P then eithera € P or b € P.

Proof: (1 = 2) Suppose aRb C P, for a,b € R. Then it is clear that (RaR)(RbR) C
P. Since both RaR and RbR are ideals of R, by the assumption of 1), we have that
one of them is contained in P. Assume it is RaR. Take A = (a) which is equal to
{na + spa + aty + X1, s;ati|s;, t; € R, n € Z} [12, 2.6]. Then AAA C RaR C P.
Again, by the assumption of 1), we have that A C P, hence a € P.

(2 = 1) Suppose that AB C P, for ideals A and B. Then we have that ARB C P.
Now suppose that neither A nor B are contained in P. That means that there is an
a € A and a b € B such that a and b are not in P. But aRb C ARB C P. So by the
assumption of 2), one of a or b has to be in P. This contradicts the assumption that
neither A nor B is contained in P. Thus 1) is shown. a



Definition 1.3.5 We say an ideal, P, is prime if it satisfies either of the above
conditions.

Proposition 1.3.6 Let R be a commutative ring with unity. Then M is a mazximal
ideal if and only if R/M is a field [8, Theorem 5.9].

Proposition 1.3.7 Let R be a commutative ring with unity, and let P # R be an
ideal in R. Then P is a prime ideal if and only if R/P is an integral domain; that
is, it contains no divisors of 0 [8, Theorem 5.10).

Example 1.3.8 Let us consider the ring R = Z x Z with addition and multiplication
performed component-wise. It is easy to see that R is a commutative ring with unity.
We will take an ideal of the ring R which is prime, but not maximal. Let I =0 x Z.
Then R/I is isomorphic to Z, which is indeed an integral domain, however it is not
a field as it lacks inverses. Hence, by Propositions 1.3.6 and 1.3.7, we see that [ is a
prime ideal, but not maximal. T



Chapter 2
Group Rings and Graded Rings

In this chapter we will discuss the relationship between a G-graded ring R and the
group ring k[G]. As well, if G is a finite group, we will note a relationship between
a G-graded ring, R, and k|[G|*. However, we will begin by exploring the structure of
k|G| and k[G|* further.

2.1 Bialgebras

Let C' be a k-module together with two k-module homomorphisms, comultiplication
A:C — CQ®C and the counit map € : C' — k, such that the following diagrams
commute:

1. Coassociativity
IQA

CRCRC cCRC
ARQI A
cCRC A C
2. Counitary Property
rec 8 cgc 18 oy
A
C

Definition 2.1.1 If a k-module, C, satisfies the above conditions, then we say that C
is a k-coalgebra. The coalgebra is sometimes written as (C, A, €), or if more than one
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coalgebra are being considered, (C, A, ec). Unless specified otherwise, a coalgebra is
considered to be a k-coalgebra.

The definition of the coalgebra is dual to that of an algebra in the sense that the
arrows in the diagrams are “reversed”. For a general coalgebra, C, we denote AC( ) as

Yo €1) @ ¢(2)- In the same way, we define (Ac ® I)Ac(c) to be X, c(1 ® 0(1) Q c2),
and (I Q@ Ac)Ac(c) = X c) ®Cg§ ® Cg%

Example 2.1.2 Let C and D be k-coalgebras, and form the tensor product C'@ D.
Now, let us define maps AC®D CR®D — CRDPRYC®D and €cC@Dp

CQ®D — k as follows:
AC’®D(C®d) Ic®T®ID AC’ ®AD (21)

where T’ is the twist map, and

eC®D(c®d) = ec(c)ep(d). (2.2)

We claim that (C® D, A¢ g p) €c @ p) is a coalgebra. Let us check that A g
satisfies the coassociativity property. Before we begin, we define the map 7Tj; to be
map which switches the elements in the i and j** positions.

Now let ¢ € C and d € D. Then

(Ae@p®DNAcgp(c®d) = Tiwch) ®dy ®ch) ®di) ®ce) @dp
= Loy CEB ® C% ® dEB ® d% ® c2) ® dyo)
= Y ) @y ®dy) ®cp) ® d(& ® d(2>
= Ty ) ®¢ % & ¢ ® d(1§ ® d§ i ®dp)
coTais o)) € ¢ E% ® ) ® d(lg ® d@% ® dgz)
TT; 2(e),(d) €1) @ ng ® d(1) 029 c 1 ® d g ® algg
7 2o)a) C) R ) @ d(l) ® d@) ®cly) ®@diy)
= o, ¢ @da) ® 0(2) ®d 2 ®c % ® dﬂ

(I®AC®D)AC®D( c®d).

Now we have a string of twist maps with an equality in the middle. We will show
that the string of maps is the identity, thereby proving that AC® p 1s coassociative.

11



First, note that the inverse of T;; is T;;. Then, we see that the above maps are in this

order:
To3Ty5T54T54TusT 3

This is clearly the identity, so equality is shown.

To show that C' @ D is counitary, let c € C and d € D. Then

(c@p®NAcgp(c®d) = Xweclcw)en(dy)) @ ce) ® d)
= Yo Lk @ eclcy)ce) @ enlday)de)
comgary 1k ® C®d
= c®d

The other part of the counitary diagram is shown similarly.

Therefore (C® D, A¢g p,€c@p) is a coalgebra. So we have shown that the
tensor product of two coalgebras is again a coalgebra. 1

Example 2.1.3 With the k-linear maps, A and ¢, defined by A(g) = ¢® g and
e(g) =1 for all g € G, k[G] is a coalgebra. Clearly A is coassociative. To show that

the group ring is counitary, we note that (eQI)(A(g)) = (R (4Qg) = 1, R g.
This is also the result given by the isomorphism defined in Proposition 1.1.5. 1

Example 2.1.4 Let G be a finite group, and let k[G] be the group ring. Define
Py € k[G]* as in Example 1.2.8. As mentioned in Example 1.2.5, k[G] is generated as
a k-module by G. For G finite, k[G]* is generated as a k-module by the p,’s.

Now let A : k[G]* — k[G]* Q k[G]* be given by A(py) = Y heqPr @ pr-14 and
let €(py) = 1x if g = e and 0 otherwise, where € goes from k[G]* to k.

We claim that (k[G]*, A, €) is a coalgebra. For the comultiplication, we observe
that

I® A)A(pg) = (IQA)(Xheapn ®ph—1g)
= Eherh ® Zjerj ®pj*1h*1g
= YXhiccPh @ Pr-1Qpi-14
= (AR (Xicari ®pi-1y)
= (A®I)A(pg)

As for counitary, we have the following:

12



(€@ A(py) = (e®I)(Xhea Pn @ pr-1y)
= 1®pe—1g
=1 ®pg

(I ®€e)Alpy) = (IQ€)(XheaPh ®pr-1g)
Pge—1 ® 1
= Py X1

Therefore we have shown that (k[G]*, A, €) is a coalgebra. T

Definition 2.1.5 If A and B are coalgebras and f : A — B is a k-linear map, then
f 1s a coalgebra map if

1. (f® f)(Aala)) = Ap(f(a))
2. €p(f(a)) = eala)
Definition 2.1.6 Let (H, M,u) be an algebra and (H, A, ¢€) be a coalgebra. Then we

say (H,M,u, A, €) is a bialgebra if either of the following two equivalent conditions
are satisfied.

1. M and u are coalgebra maps, or
2. A and e are algebra maps.

Let us note that k£ is an algebra, and a coalgebra with M) being the normal ring
multiplication, Ag(l) = 1@, and both uy and €; being the identity map.

Proposition 2.1.7 For a group G, k[G] is a bialgebra.

Proof: From Examples 1.2.5 and 2.1.3 we know that k[G] is both an algebra and a
coalgebra. To show that k[G] is a bialgebra, we will show that M and u are coalgebra
maps.

First, from the following, we shall see that M is a coalgebra map. Let g, h € k[G]
and [ € k. Then

13



L (MOM)(Aye@ua9®h) = (MOM)(9®@h®g®h)
gh ® gh

A(gh)

= AM(g®Hh))

2. e(M(g®h)) = e(gh)

1

e(g)e(h)

= 6k[G]®k[G](g®h)

Next, we will show that u is a coalgebra map. Let | € k. Then

L (w®u)(A(l) = (u®u)(®1)
le®Re
A(le)
A(u(l))

2. e(u(l)) = le(le)

= el

Thus we see that M and u are coalgebra maps. So, by Definition 2.1.6, k[G] is a
bialgebra. O

Proposition 2.1.8 Let G be a finite group. Then k[G]* is a bialgebra.

Proof: We know that £[G]* is an algebra and a coalgebra from Examples 1.2.8 and
2.1.4. To prove that k[G]* is a bialgebra, we will show that condition 2 of Definition
2.1.6 is satisfied.

First we will show that A is an algebra map.

1. if g =h, then A(pgpr) = A(py)

EaEG Pa ®pa—1g

EaeG PaPa ®paflgpaflg

(EaeG Pa ®pa*1g)(ZaEG Pa ®pa*1_q)
A(pg)A(py)

= A(pg)A(pn)

14



if g # h, then A(py)A(pr) = (Caec Pa @ Pa-1g) (e P @ Do-14)
Ea,bEG PaPb ®pa—1gpb—1h

EaEG Da ®pa—1gpa—1h

0

A(0)

= A(pgpn)

2. A(Uk[G]*(lk)) = A(Egerg)

2gea A(py)

Zg,hEG P ® Pr-14

> heaPr @ ZjEG pj
Uiy (k) @ ukiay- (1k)
Uk[G]*@k[G]*(lk)

And now we will show that € is an algebra map. Let d,, = 0if g # h and d,p =1
if g = h. Then

L. €(pgpn) = €(6gnpy)
= 59,1159,6
5g,66h,e

= €(pg)e(pn)

2. e(uk[g}*(lk)) = 6(z:gerg)
Ygea €(pg)
1

= Uk(lk)

Thus we see that condition 2 holds. Hence k[G]* is a bialgebra if G is a finite
group. U

2.2 Equivalent Conditions for R to be G-Graded

Now we will show a relationship between a GG-graded ring, R, and the group ring,
k[G]. As well, if G is finite, there is also a relationship to the dual of the group ring,
k[G]*.

Proposition 2.2.1 For any group G and ring R the following are equivalent:

1. R s a G-graded ring.
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2. There ezists a k-linear map ¢ : R — R k|G| such that for all r,s € R

(o) IQe)h(r)=r@1
(b)) TQA)p(r) = @I)Y(r)
(c) Y(rs) = 1p(r)v(s).

If G is a finite group, then either 1. or 2. is equivalent to

3. R is a left k[G]*-module such that for all p, € k[G]* and r,s € R, py(rs) =
Ve (Pgn=17) (Pn3)-

Proof: (2= 1) Let ¢ : R — R @ k[G] be such that it satisfies condition 2. Define
R, to be the set of all 7 € R such that ¢(r) =r® g.

Now take an element of RjN Ry, and call it . Then ¥(r) =7 ® g = r @ h. Recall
from Example 1.2.5 that R ® k[G] is a free R-module with basis 1® g, g € G. Thus
r(1®g) = r(1®h) implies g = h, or r = 0. Next, take r € R and let ¢(r) =
Yecr(9) ® 9. By property (b) of condition 2, we have that Y cc7(9) @9 Qg =
Y e ¥(r(g9)) ® g. This means that ¢(r(g)) = r(g) @ g, putting r(g) in R,. Thus we

can write 7 as Y- ,cq 7(9).
Let r € R, and s € Ry. Then ¢(rs) = ¢(r)¢(s) = (r®g)(s®@h) = rs Q@ gh. So
rs € Rg,. Hence R is G-graded.

(1 = 2) Let R be G-graded and define ¢ : R — RQ k[G] by ¥(1) = Xycc 74 ® 9.
Now (I X 6) (EgeG Tg X g) = EgEG Tg X 6(9) = deG Tg Ry =7rQ 1.
We can see that (Y@ I)(¥(r)) = Xyea¥(ry) ®9 = Xy Ty @9 ®g. We can

ignore the second sum in this equation, since (r4), = 0 when h # g. Continuing, we
observe that this sum is equal to X cq 7, @ A(g) = (I Q@ A)((r)).

Now let r,s € R. Then

Y(rs) = Tyea(rs)y®g

Zg,hec Toh-15n Q g

> aheG TeSh ® Th
22ecTe @ T X pea sn®h
= P(r)(s).

For a finite group G' we will show that condition 1 is equivalent to condition 3.

(3=1) Let R be a left k|G]*-module that satisfies condition 3, and let R, =
{pyr|r € R}.

Take r € Ry, N Ry. Then r = pyr = ppr. Thus 7 = pr(pyr) = (prpg)r = 0 if
g # h. It is clear that each r € R can be written as a sum of such elements, since

r= 1)) = (Xgecpy)r-
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Next, let 7 € Ry and s € Ry. Then pgn(rs) = Yuea(Pgha-17) (Pas) = (pg7) (prS) =
rs. So R is a G-graded ring.

(1 = 3) Let R be a G-graded ring, and define the action of k[G|* on R by p,r = r,.
Let us show that R is a left k[G]*-module.

Let r,s € R and py, pr, € k[G]*. Then py(r +s) = (r+8)g =14+ Sg = pgT + Dys-
The second condition of Definition 1.1.1 is satisfied by the generalization of the defined
action of k[G|*. Finally, (rp,)ps = 0447y, where § is the Kronecker delta. For the
other side of the associativity condition, r(pgpy) = r40,,- Hence R is a k[G]|*-module.

Now let 7,5 € R. Then (rs)p, = (rs)g = YacaTaSa-1g = 2acc(TPa)(8Pa-14)-
Therefore condition 3 is satisfied. a
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Chapter 3
Smash Products

3.1 The Smash Product of a G-graded Ring

Let G be a finite group, and let R be a GG-graded ring. From Proposition 2.2.1, we
know that R is a left k[G]*-module. Define R#k[G]* to be the k-module, RQ k[G]*
with multiplication defined by:

(r#pg) (s#pn) = 15gh-1#Dn, (3.1)

where r, s € R, and pgy, ps, are as defined in Example 1.2.8. This multiplication can be
extended to finite sums of such elements. Each element in R#k[G]* can be written
as a finite sum of elements of the form r+#p,.

We will show that the multiplication described above is associative.

(T#pg)((s#ph)(t#pm)) = (T#pg)(Sthmfl#pm)
= T(Sthmfl)gmfl#pm
= ngh—lthm— 1 #pm
= (ngh—l #ph) (t#pm)
= ((r#py)(s#pn)) (t#pm)

The other ring conditions come from the definition of the tensor product. Hence

R#E[G]* is a ring.

Proposition 3.1.1 For a finite group G and a G-graded ring with unity R, R#k|[G]*
s a k-algebra.

Proof: We have already shown that R ® k[G]* is associative. Define a k-linear map,
u:k — RQEK[G], by u(1x) = 1r ® X yecepy- Then

Mu@I)(1, @r#py) = (1r# Xheapn)(r#py)
= Y heG Thg-'#Dyg
= T#Dp,.
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The other half of the unitary diagram is satisfied similarly. O

In [18], the smash product of a Hopf algebra, H, and a k-algebra, A, with H-
action is defined. The above definition is a special case of this construction, where

A = R and H = k[G]*. Another example of the smash product is the skew group
ring, defined in Example 1.2.11. In this case, H = k[G], and A = R.

Let us now extend the definition of the smash product to rings graded by infinite
groups. For this, we will use Pg, the subring of k[G]* defined in Example 1.2.8.

With both R and Pg; being k-modules, we can form the tensor product R @ Fg.
We will use the multiplication defined in Equation 3.1 for the multiplication in this
ring. Again, it is extended by linearity to finite sums. This structure gives an asso-
ciative ring.

Definition 3.1.2 Let G be any group, and let R be a G-graded ring. Now take Pg
to be the k-subalgebra of k[G|* generated by the projection maps, {py}tsec. Then
the smash product, denoted R# Pg, is the tensor product R@Q Pg with multiplication
as given in Equation 8.1. Elements in R#Pg are written Y gcqr(9)#p, with the
understanding that only finitely many r(g) are non-zero.

If G is a finite group, Py is equal to k[G]*. Thus the smash product above is the
same as that defined for finite groups G. For finite G, the identity in k[G]* is 3 e Py-
However, if GG is infinite, the smash product R# Pg; has no identity element.

Remark 3.1.3 The group G acts as a group of automorphisms on R# Pg by g(r#pp) =
T#ppg-1. Clearly these maps are automorphisms of the additive group R#P;. To see
that g € G is multiplication perserving, we compute

g((r#pn) (s#pe)) = g(rsm1#p)
= T'<9hwt*13'%'éptg*1
= (T#phg—l)(s#ptg—l)
= g(r#pn)g(s#py).

We say that an ideal, I, of R# Pg is G-invariant if each ¢ € G maps I to I.

3.2 The Smash Product as a Ring of Matrices

Let G be a group, R a G-graded ring, and let the ring Mg(R) denote the set of row
and column finite matrices indexed by G with entries from R. That means that each
column and each row has only finitely many non-zero entries. However, the matrices
themselves can have an infinite number of entries. We use M (R) to denote matrices
with finitely many entries.
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Proposition 3.2.1 The smash product, R#Pg, can be embedded in the matriz ring
Mg(R).

Proof: Let ¢ : R#Pg —» Mg(R), whete 6(5cq m(9)#D,) = ¥yee Tnee 7(0)ne(hg, 9).
The additive property of homomorphisms is clearly present from the definition. Now

let 7#pgy, s#pn € R#Pg. Then

o((r#py)(s#pn)) = S(rsgn-14£pn)
ZzeG(rsgh—l)we(xha h)

> zeG Tahg-1Sgh-1€(zh, h)

EyEG Tysgh—le(yga h)

Yyea Tye(Y9, 9) Xea S-€(2h, h)
= O(r#pg)d(s#pn).

Now to show that ¢ is injective, let ¢(3,cq 7(9)#py) = ¢(X e 5(9)#py). Then

we have
YoneaT(@)ne(hg,9) = Xgneas(g)ne(hy, g)
(@) = s(g)n (Vg,h € G)
r(g) = 8(9)
gEGT( )#pg = gEG S( )#pg

Hence ¢ is an injective homomorphism. Therefore we can consider the smash
product as a ring of matrices. O

3.3 Adjoining a 1 to the Smash Product

Since we would like to consider R as a subring of the smash product, R# P, in the
infinite case, we need to find a way to adjoin a 1 to the smash product. One method
of adjoining the 1 is called the Dorroh extension. Let us describe the method for a
general ring.

Let R be a ring without a 1. The Dorroh extension is a ring with 1 that contains
R as a subring. It involves forming Z x R and defining a ring structure. First let the
addition and multiplication on Z x R be defined by

(n,r)+ (m,s) = (n+m,r+s) (3.2)

and
(n,r)(m,s) = (nm,ns +rm+rs) (3.3)

Definition 3.3.1 For a ring R without unity, the ring described above is called the
Dorroh extension of R. We write it as (Z, R) or sometimes R'.
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Example 3.3.2 In the definition of the smash product of a G-graded ring, R, where
G is an infinite group, R#P; is a ring without a 1. We will construct an object
similar to that of the Dorroh extension, using R as the ring with unity instead of Z.
Let R act upon R#Pg by

r(s#pg) = r5#p, (3.4)
and
(S#pg)r = Z Srgmfl#pz- (35)
reG

These actions make the smash product a left and right R-module. We will show
that it also satisfies the bimodule condition in Definition 1.1.3. Let r,s € R and
t#py € R#Pg. Then

(Tt#pg)s = ZzeG rtsgxfl#pw
= ZzeG rtsgxfl#pw
=T ZwEG tsgz—l #pw
= r(t#p,s).

These actions make R#P; an R-bimodule.

So we can extend the smash product to (R, R#Pg) with multiplication defined
as in the case of the Dorroh extension. T

Proposition 3.3.3 For a G-graded ring R with unity, (R, R#Pg) is an associative
ring with unity, which contains R#Pg as a subring.

Proof: Clearly, (R, R#P;) is an abelian group since both R and R#P; are rings.
So, we just have to check distributivity and associativity.

Let (r, a#py), (s, b#pn), (t, c#pm) € (R, R#Pg), and we will let b and ¢ be homo-
geneous elements from Rg,-1 and Rp,,-1 respectively. Then

L. (r,a#p,)((s, b#pn) + (L, cH#pm))

(1, a#tpy) (s + t, b#tpn + cHpm)

(r(s +1t), 7 (b#tpn + c#tpm) + atpy(b#pn + c#pm) + adtpy(s + 1))

(rs 4+ 1rt, 7bF#pn + rcHDPm + aFHEDDHDL + aFDPyCHDm + aFDys + aFEpyt)
(

(

7S, TbF#py + aFHDPbF#Py + aFEpys) + (1, 7CHPy + aFEDgCHDPy + aFEpyt)
r, a#pg) (8, b#ph) + (Ta a’#pg) (ta c#pm)

2. ((T: a#pg) + (37 b#ph))(ta C#pm)
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(1 + s, a#tpy + bF#py) (t, c#pm)

((r+ 8) (1 + 8)c#pm + (a#py + bF#Dn)c#DPm + (aFpy + b#Dr)1)

(rt + st, rcHpm + SCHDm + AFHDGCHDm + bHDLCHDm + aFpyt + bF#pit)
(1t rcHEDm + OFEPRCH D + aFEDgL) + (S, SCHPm + aFDgCHPrm + bFPit)
(7, a#pg) (t, c#tpm) + (8, b#pn) (L, c#pm)

3. (1, a#tpy) (s, b##pn) (¢, Hpm))

(7, a#tpy) (st, sSCHpm + bcHDPm + X pei btha—1#Dz)

(T(St)’ T(Sc#pm + bc#pm + EzeG’ bthw—l#pw)

+a#pg (Sc#pm + bc#pm + EmeG bthw—l#pw) + a#pg(St))

= ((Ts)t’ T‘(SC)#pm + T(bc)#pm + EwEG T(bthzc—l)#pz
-I-CL(SC)gm—l#pm + a’(bc)#pm + ZmEG a’(bthz—l)gzc—l#pac
+ ZyEG a’(St)gy—l #py)

= ((T‘S)t, (TS)C#pm + (rb#ph)c#pm + (’/’b#ph)t
+a(sgh*10)#pm + a(bc)#pm + ZzeG a(bthwfl)#pw
+ X yvea a(syty- lgy~ )#py)

= ((rs)t, (rs)c#pm + (rb#tpn)c#tpm + (rb#pn)t
+(asgnh—1CH#pm + (aFEPbFEPh) cHPm + (aFEpybHEpn)t
+(Ev€G asv#pv—lg)t)

= ((Ts)t’ (’I"S)C#pm + (rb#ph)c#pm + (Tb#ph)t
+(Xscc aSga1#Ds ) CHEDPm + (aFEDgbFEDn) cH#Dm + (aFtp b#pn)t
+(Xyeq aSgy—1#py)t)

= ((T‘S)t, (TS)C#pm + (rb#ph)c#pm + (Tb#ph)t

+(a#tpys)cH#pm + (a#p b#pn)c#pm + (a#pb#pn)t

+(a#pys)t)

((rs)t, (rb#pn + aF#peb#pn + aFpgs)t

+(rb#tpn + aFtpbFPLaFPys)cH Dy + (15)CHDm)
(rs, rb#pn + a#Epgb#pn + a#pys)(t, cH#pm)

((r, a#tpy) (s, bF#pn)) (L, cHpm)-

The 1 of this ring is (1, 0). Also, R# Pg is isomorphic to the subring (0, R# Pg).
O

Lemma 3.3.4 Let R be a G-graded ring with unity. Then
1. R#Pg = (0, R#Pg) is an ideal of (R, R#Pg)
2. (R, R#Pg)/(0, R#Fs) = R.
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Proof:

1. Let (0,7) € (0, R#Pg) and (s,t) € (R, R#Pg). Then (0,7)(s,t) = (0,rs+rt) €
(0, R#Pg). Similarly, (s,t)(0,7) = (0, sr + tr) € (0, R#Pg).

2. Let ¢ : (R, R#Pz) — R be given by ¢((s,r)) = s. First, let us show that ¢
is a ring homomorphism. Clearly the additive property holds, since addition is
performed component-wise in (R, R#Pg). As for the multiplicative property,
the multiplication in (R, R#Pg) is component-wise in the first component.

Next, we will note that the kernel of ¢ is (0, R#P), and that ¢ is onto. By the
first isomorphism theorem (see [15, Theorem 3.4]) which states that for a homo-
morphism 7 : A — B, A/ker(7) = im(7), we have that (R, R#Pg)/(0, R#Pg) =
R.

O

In [13], Quinn defines a smash product for G-graded rings with unity with G
being an infinite group. There, the definition relies on the ring of matrices, Mg (R),
mentioned in Section 3.2. First, the ring R is embedded in the matrix ring by the
homomorphism 7 : R — M¢g(R) where 7(r) = A with A(g, h) = rgp-1. The image
of 1 is denoted R and for r € R, we write T for n(r).

Now take the subring of Mg(R) generated by R and the matrices {e(g,g)}4ec-
We will call this ring Mg g).

Theorem 3.3.5 For a G-graded ring R, M) is isomorphic to (R, R#Pg).

Proof: Let ¢ : Mgy — (R, R#Pg) be defined by ¢(7 + 3e(g,9)) = (1, s#py),
extended to sums by linearity. This satisfies the additive property of homomorphisms.
For the multiplicative property, we will need the following:

Te(9,9)5 = Y abeG Tap-1€(a, b)e(g, g) Y deG Scq-r€(c, d)
Za,b,c,dEG Tab—lscd—le(a’ b)e(g, g)e(c, d)
Za,b,deG Tab*ISgdfle(a: ble(g,d)

Ea,dEG Tag—1 Sgdfle(aﬂ d)

E(z,(ziecv‘(rs_(]d*l)atr1 e(aa d)e(d’ d)
Za,b,deG(TSgd*I)abfle(aa b)e(d, d)

= Y 4egTSqa-1€e(d,d).
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Now take 7 + 5e(g, g),t + Te(h, h) € Mgr). Then

O((T +35e(g, 9))(E+ue(h, b)) = ¢(rt+T7ue(h, h) + Xpeg Stga—r€(z, ) + Sugp-1e(h, h))
= (Tta TuF#ph + ZzEG Stgm—l#pz + Sugh—l#ph)
= (rt,r(u#pn) + (s#py)t + (s#py) (u#pn))

= (r, s9#Dpy)(t, utpn)

= ¢(T +3e(g,9))d( + ue(h, h).

Therefore ¢ is a homomorphism. The kernel of ¢ is 0 making the homomorphism
injective. That it is surjective is clear, since (7, s#p,) = ¢(7 + Se(g, g)). Hence ¢ is a
ring isomorphism. O

With this equivalence shown, we will freely use either notation in computation.
Corollary 3.3.6 For infinite groups, R#FPc is isomorphic to @, Re(g, g).

Proof: Using the isomorphism from Theorem 3.3.5, the equivalence is clear, since
o(Te(g,g)) =r#p, for allr € R and all g € G. O

The smash product, R#k[G]*, has been used to study properties of a ring R
graded by a finite group. For example, Cohen and Montgomery proved in [5, Propo-
sition 4.3] that for the Jacobson radical, J, and a G-graded ring, R, the graded
Jacobson radical of R was equal to the largest graded ideal contained in the Jacobson
radical of R; that is, Jo(R) = J(R)g. Another result from the same paper is that
J(R,) = Ja(R) N R, for a G-graded ring [5, Corollary 4.2]. The same result was also
proven in [5, Corollary 5.4] for the prime radical.

In [13], Quinn uses the ring Mg(r) to examine properties of graded rings. And
Saorin, in [17], computes the Jacobson radical of M¢g). In Chapter 5, we will extend
that result to all hereditary radicals. However, we will first discuss graded radicals in
Chapter 4.
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Chapter 4
Radicals of the Smash Product

From now on, we will assume that & is the ring of integers.

4.1 Definition of Radical Classes of Rings

Definition 4.1.1 Let X\ be a class of associative rings. We say that X\ is a radical
class if

1. X is homomorphically closed,
2. if A/B and B are in X\, then A is in \;

3. if I,, a € A, where A is any indexing set, is an ascending chain of ideals of A
with each I, in A, then U, L, s in A.

We denote by A\(R) the largest ideal of R that is in A\. We call A(R) the A radical of
R. For example, if X is the Jacobson radical class, we would say that A(R) was the
Jacobson radical of R. This characterization can be found in [6, §1.1].

Note that if o is an automorphism of the ring R, and [ is an ideal of R in A,
then «(I) € X also by Definition 4.1.1 (1). Since A(R) is the largest ideal of R in A,
a(A(R)) = M(R).

Example 4.1.2 An example of a radical classis D ={R |Vn €Z Vr € R Jy € R
such that » = ny}. This radical is called the divisible radical.

It is clear that D is homomorphically closed since, taking any homomorphism
¢, ¢(x) = ¢(ny) = no(y). For the second condition, we see that for any a € A,
a € a+ B e A/B for some a € A. Now A/B € D so a+ B =n(a + B) = noy + B.
So we now have that a = na; + ¢ for some ¢ € B. Since ¢ € B € D, we get that
a = nay + ne; = n(ag + ¢1). Therefore A € D. The final condition is easily shown.
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For i = > cA ta Where each iy € Iy, 1 = Y 0cA NJa = N D qe Ja, Where i, = nj,,
Ja € 1,.

Therefore, D is indeed a radical class. T

Radicals which depend only on the additive structure of the ring are called A-
radicals [9]; the radical D above is an example of an A-radical.

Before going further, let us define R™ to the additive group of the ring R. Now
we can say when a radical is an A-radical.

Definition 4.1.3 A radical class, A, of rings is called an A-radical class if it satisfies
the following condition:

Re A R " =2St=8cA

[9, Definition 1.2]

Since A-radicals depend only on the additive group, we have that A(R@ R) =
A(R) @ A\(R) for an A-radical X\. This can be extended to an arbitrary number of
direct sums. With this piece of information, we note that the additive group of
(R, R#Pg) is isomorphic to R @(R#Pg)", and (R#Pg)t = @yeq RT. Thus, for
an A-radical, A, we have that A((R, R#Pg)) = A(R) ®(@4ec A(R)).

Now let us move on to the Jacobson and prime radicals. In [6], equivalent defini-
tions are given for the Jacobson radical. But before we give them, let us define a few
terms.

Definition 4.1.4 We say that a right ideal, I, is regqular if there is an element x € R
such that xr —r € I for all r € R. Left reqularity is defined similarly.

Definition 4.1.5 We say that an element r € R 1is right quasi-regular if there is an
element x € R such that r + x 4+ rxz = 0. Left quasi-reqularity is defined in the same
manner.

Definition 4.1.6 For a ring R, we define the Jacobson radical by any one of the
following characterizations. The Jacobson radical of R, J(R) is

1. the intersection of all reqular mazimal left (right) ideals of R [6]

2. the set of all r € R such that xr is left (right) quasi-reqular for every r € R
/6, 12]
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3. the set of all r € R such that rM = 0 for any left R-module M such that M
has no proper nontrivial R-submodules. [14, 10].

Note that if R does have unity, then every right (left) ideal is regular, with the
x in this case being 1, and that an element r, being right (left) quasi-regular is the
same as (1 +r) being right (left) invertible, meaning that the element has an inverse
that is multiplied on the right (left). So this allows simpler characterizations for the
Jacobson radical when R is a ring with unity.

Example 4.1.7 Let Qg be the set of rational numbers with the usual addition.
Now define the multiplication as follows: ¢1qo = 0 for any ¢;,q2 € Qg. With these
operations, Qg is a commutative ring without unity. What is the Jacobson radical
of this ring? Since Qp does not have a 1, we use Definition 4.1.6 (2). That means
we need to find elements ¢ € Qg such that for every z € Qg we can find a y € Qg
such that xq + y 4+ yrq = 0. However, since the multiplication yields 0 in all cases,
the condition simplifies to y = 0. Thus, every element of Qg is left quasi-regular.
Therefore J(Qo) = Qo. T

Definition 4.1.8 An elementr € R s strongly nilpotent if for every sequence xg, x1, - - -
where xo = r and Tn11 € T,Rx,, there exists an N € Z such that z, = 0 for all
n > N. FEwvery strongly nilpotent element, r, is also nilpotent meaning r™ = 0 for
somen >0 [11, §3.2].

Definition 4.1.9 Recall from Definition 1.3.5 the definition of a prime ideal. The
prime radical, denoted N(R), is the intersection of all prime ideals of the ring R [6,
Theorem 18]. It is also the set of all strongly nilpotent elements [11, §3.2, Proposition
1]. If R is a commutative ring, N(R) is the set of all nilpotent elements [10].

Example 4.1.10 Let Q[z| be the polynomial ring over the rational numbers. It is
clear that this ring is commutative and has a 1. Since Q is a field, it has no nilpotent
elements. It follows that the polynomial ring has no nilpotent elements. Therefore

N(Qlz]) = 0. t

Definition 4.1.11 We call a radical, )\, hereditary if, for any ideal I of R, A\(I) =
AMR)N I [6].

It is relevant to note that both the Jacobson and prime radicals are hereditary
[6]. An equivalent way of defining a hereditary radical is as follows: if A is a radical
class, then A is hereditary if when R € A and S is an ideal of R, then S € \.

Using this definition, we can see that the divisible radical, D, from Example 4.1.2,
is not hereditary. For the ring Qg from Example 4.1.7 lies in D because for all x € Q,
all positive integers n, z = 7 4 --- + £ (n factors) = n(2). However the subset Z of
Q is an ideal of Qg and is not in D.
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4.2 Graded Radicals

A graded radical is a radical in the class of graded rings. From now on, R will denote
a G-graded ring with 1, and G will be a fixed group. Let us take a look at the
traditional graded Jacobson radical. We will list the equivalent definitions for the
graded Jacobson radical, Jg(R).

Definition 4.2.1 For a G-graded ring R with 1, Jg(R) is the graded ideal defined by
any of the following equivalent statements:

1. the set of elements of R annihilating all G-graded R-modules that have no
proper nontrivial graded R-submodules. We call such modules simple G-graded

R-modules [4, 3].

2. the intersection of all left (right) ideals of R mazimal in the set of graded left
(right) ideals of R [3].

Theorem 4.2.2 If R is a G-graded ring then J(R#Pg) = Ja(R)# P [3, Theorem

Proof: As given in [3].

First, we show that J(R# Pg) is included in Jg(R)# Pg. Suppose x = 3 c 7(9)#Dy
€ J(R#Pg). Since J(R#Pg) is a two-sided ideal, r(g)#p, € J(R#Pz). There-
fore it suffices to show that r#p, € J(R#Pq) implies r is in Jg(R). Note that
since J(R#Pg) is G-invariant under the G-action on R# Pg defined in Remark 3.1.3,
r#p, € J(R#Pg) implies r#p, € J(R#P;) for all h in G. To show that r is in
Ja(R), we show that  annihilates all simple graded left R-modules.

Let N be a simple graded left R-module. Then N is a unital left R# Pgz-module
with module action given by r#p,n = rng, and is simple by [3, Corollary 2.5] and [3,
Theorem 2.6]. Therefore for any n € N and for all g € G,

rng = (r#tpg)n = 0.
Therefore r annihilates N and 7 is in Jg(R).

Conversely, let © = 35 c;7(9)#py be an element of Jg(R)#Pg. Since Jg(R) is
G-graded, we may assume that each r(g) is homogeneous. Let M be a simple left
R# Pg-module. Then M is a simple graded left R-module where M, = p,(M). The
module action is given by rm, = r#p,m, and so r#psm; = 0 for g # h. So M is
annihilated by each r(g). Thus, for each g € G,

r(9)#psM =r(g)M, =0,
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and z annihilates M. O

In Definition 4.2.1 part (2), we define the graded Jacobson radical using graded
maximal left (right) ideals. We can define the graded prime radical using graded
prime ideals. We say a graded ideal, I, is graded prime, if, for graded ideals A and
B, AB C I implies either AC I or B C I.

Definition 4.2.3 For a G-graded ring R, the graded prime radical Ng(R) is the
intersection of all graded prime ideals of R. Also, by [5, Theorem 5.1], we have that
Ne(R) = N(R)g; that is, the largest graded ideal of R contained in N(R).

The reflected radical is a radical in the class of graded rings. The definition of
this radical depends on the smash product.

Definition 4.2.4 Let A\ be a radical class, and let the reflected radical of the graded
ring R, Arep(R) be the set {r € R|r#p, € N(R#P;) Vg € G} [2]. The radical class for
the reflected radical of X is given as Arey = {R|R is a G-graded ring with R#Pg € \}
[1, Proposition 1.2].

Proposition 4.2.5 For any radical, \, A\(R#Pg) = Mef(R)#Pg, for any G-graded
ring R [1].

However, before we prove this, we must define a few terms. First, for any ideal
I of R#Pg, we say that I = {rir#p, € I, Vg € G}. Next we set I+ = (Ig)g, the
largest graded ideal contained in Ig. It can be seen that if R is a ring with 1, then Ig
is always graded. If we take z € I then x#p, € I for all g € G. Then we get that
(1#png) (x#py) = zn#p, € I for all g, h € G. Hence z), € I for all h € G. Therefore
I is graded.

Lemma 4.2.6 Let I be an ideal of R#Pg, where R is a ring with 1. If I is G-
invariant, then I = IV#Pg.

Proof: Let x = Y . x(g)#py be in I. Then z(1#ps) = z(h)#pp. So the elements
x(g) are in I, for any « € I. Let us concentrate on z(g)#p,. Since I is G-invariant,
h(z(g)#py) = 2(9)#pgn-1 € I for all h € G. Hence z(g) € Ir. Now remember that
I is graded, so I+ = Ig. So it is clear that [ = IV#P. O

Since we are only considering rings with 1, then we know from above that A(R#Pg)r
is a graded ideal of R. Hence from Lemma 4.2.6, \(R#Pg) = (\(R#Pg))*#Pg. This
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means that (A(R#Pg))* is the largest ideal, K, of R such that the smash product,
K#Pg, isin A. This is exactly the definition of A, (R). So AM(R#FPc) = Aef(R)#P6.

With Theorem 4.2.2, and Proposition 4.2.5, it is plain to see that for the Jacobson
radical, Jg(R) = Jres(R) for any G-graded ring R.

In Definition 4.1.9 we gave an element-wise definition of the prime radical. Sim-
ilarly, we can also describe the reflected prime radical by its elements. To do so, we
need to define a new term.

Definition 4.2.7 Let R be a G-graded ring and let x = ¥} x4 be an element of
R. Then we say that x is graded strongly nilpotent, if for each x4, every sequence
T, T1," -, where Ty = x4, and T,y € TRy 11y, there exists an N € Z such that
xn, =0 for alln > N.

Now, we give a new characterization of N,.r(R).

Theorem 4.2.8 Let v =Y.' | g, be in a G-graded ring R. Then x is in Nye;(R) if
and only if x is graded strongly nilpotent.

Proof: Take v = Y cq 2y € Nyep(R). Let h € G and let 2y = z;. Let a sequence
21, 7 - - - be chosen such that z,,, € 2, Ry-12,. Since 2y € Ry, all z,, will be in R}, for
n > 0. S0 2,41 = 2,Tnz, Where 7, is an element of Ry-1.

Let us form a new sequence {y,}, where vy, = z,#pe. Then

Ynt1 = (ZnTn2n#Pe) = (2nFtDe) (Tn#Dn) (2n#De) € 2nFtDe(R#Pa) 2n#pe

Since N,.r(R) is a graded ideal that contains z, it also contains z. Thus, yo €
Nref(R)#Ps = N(R#Pg). So yp is strongly nilpotent, implying that y, = 0 for all
n greater than some integer M. Hence z, = 0 for all n > M.

Because the h was chosen arbitrarily, = is graded strongly nilpotent.

For the converse, take x ¢ N,.;(R). This implies that z, ¢ N,.f(R) for some g €
G. Let yo = x4#p. which is not in N(R#P;), and let 2y = z,. Since yo ¢ N(R#Pg),
it is not strongly nilpotent. That means that there is a sequence ¥y, ¥s, - such
that yn41 € yn(R#Pg)yn, which is never zero. Note that y; € z,R,-12,#p. and let
Y1 = 21#De. Similarly, yo € 21 Rg-121#pe, etc. Let z, be such that y, = z,#p.. Since
g € Ry, all z, will also be in Ry, with 2,41 € 2,R4-12,. Since y, # 0 for all n,
zn # 0. Hence x is not graded strongly nilpotent. O

From this characterization, we obtain a new proof of [2, Proposition 2.1] for the
prime radical.
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Corollary 4.2.9 If R is a G-graded ring, then Nyep(R) N Re = N(R,).

Proof: If x € N,¢f(R) N R,, then z € R,, which is a subring of R. Also, z is graded
strongly nilpotent, since it is in N,.r(R). That means that every sequence of the form
Xg,T1--- where zop = x and x,,1 € x,Rex, is zero after a finite number of terms. So
Nyes(R) N Re C N(R.).

Conversely, for x € N(R,), © € R, and is strongly nilpotent. But it is also graded
strongly nilpotent, so is in Ny.f(R). O

With this characterization, we can show the relationship between the graded
prime radical Ng(R) and the reflected prime radical, N,es(R). The relationship is
already given in [1, Theorem 2.3], but this characterization can give a new proof to a
known result.

Corollary 4.2.10 For any G-graded ring R, N(R)g = Ng(R) C Nyef(R).

Proof: Since N(R)q is graded, we need only consider homogeneous elements. Let
zg € N(R)¢ € N(R). Then z, is strongly nilpotent, meaning that all sequences of
the form zy = x4, and 2,41 € z,Rx, are zero after a finite number of terms. That
implies that all sequences of the form z¢ = x4 and x,41 € ,R4-12, are zero after a
finite number of terms. So z, € N,.f(R) for all g € G. a

Example 4.2.11 Let R = Q[z] as in Example 1.2.4. R is a Z-graded ring with R,, =
{0}ifn < 0 and R, = Qz™ if n > 0. By Theorem 4.2.8, we have a characterization of
the reflected prime radical. Let f(z) € R. If f(z) has no constant term then f(z) is
graded strongly nilpotent. This can be easily seen by the grading of R, since for n > 0,
R, =R_, ={0}. SozR C N,¢f(R). From Example 4.1.10 we know that N(R) = 0.
So we have an example where Ng(R) C N,¢s(R), since Ng(R) C N(R) = 0. T
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Chapter 5

Hereditary Radicals of the Smash
Product with 1 Adjoined

5.1 Preliminaries

The following theorem from [7], together with the Proposition 4.2.5, leads us to ask
if we can characterize the radical of the smash product with a 1 adjoined, for any
radical.

Theorem 5.1.1 Let A be a ring radical, and let R be a ring. The following are
equivalent:

1. There exists an extension (A(R))* of A(R) by R such that A((A(R))*) = A(R).
2. MR) =0.
3. For every extension A* of a ring A by R, \(A) = A(A*%).

[7]

Example 5.1.2 Let R be the polynomial ring Q[z]. Since R is a Z-graded ring,
we can form R#Pz. Also, from Example 4.1.10 we see that N(R) = 0. Adjoining
a 1 to the smash product, we get the extension (R, R#Pz). From Theorem 5.1.1,
N((R,R#Pz)) = (0, N(R#P¢)) = N(R#Pz) = Nyes(R)#Pg. T

Theorem 4.2.2 leads to the question of what the Jacobson radical of (R, R#Pg)
looks like. And the above proposition suggests it could just be the Jacobson radical
of R#Pg. However, from Saorin [17], this is not so. The problem is that J(R) may
be nonzero.
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Theorem 5.1.3 If R is a ring with unity graded by an infinite group G, then
J((R, R#Pc)) = (Jo(R) N J(R), Jo(R)#Pc).

[17, Theorem 1]

In the proof, Saorin used Definition 4.1.6 (3) to define the Jacobson radical. We
use a different approach to extend his result to all hereditary radicals A.

5.2 Hereditary Radicals of (R, R# Pg)

Lemma 5.2.1 If I, J are ideals of R, with J being a graded ideal, such that I C J,
then (I, J#Pg) < (R, R#Pg).

Proof: We need only show that the inclusion holds for single components of the
ideal and the ring. The general case can easily be deduced from that. Let (r, s#p,) €
(R7 R#PG) and (Za]#ph) € (I’ J#PG) Then (7’, 3#pg)(iaj#ph) = (Tiar(j#ph) +
(s#pg)i + sjgn-1#pn). Since J is graded and I C J, the homogeneous components
of ¢ and j are in J. Thus, with the help of Equations 3.4 and 3.5, we see that the
R+# P component of the product is indeed in J#FPg. The right hand side is shown
similarly. O

Lemma 5.2.2 Let R be a G-graded ring. Then for any radical, A\, A\((R, R#Pg)) C
(A(R), R#tPc).

Proof: From Lemma 5.2.1 we can see that both (A(R), R#P;) and (0, R#Pg) are
ideals of (R, R#Pg). To show the containment, from [16, Remark 2.6.0], all we need

to show is that (R, R#P)
Mo e = o)

To accomplish this, we will show that the quotient ring is isomorphic to R/A(R).

By Theorem 3.3.4 (2), (R, R#P;)/(0, R#Pz) = R and by a similar proof we get
(AM(R), R#Pc)/(0, R#Pc) = A(R). So

(R,R#Pg)
R ~ (O,R#Pg) ~ (R’ R#PG)

= O\(R),R#PG) :
NB)  CRER ~ (\(R), R PS)

And since A(R/A(R)) = 0, we know that Equation 5.1 is true. O
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Since (0, R#Pg) is an ideal of (R, R# Pg) we get that for any hereditary radical,
A, A0, R#Pg)) = AM((R, R#Pg))N (0, R#Ps). Now we come to the central theorem,
characterizing the radical of the smash product with 1 adjoined for any hereditary
radical.

Theorem 5.2.3 Let R be a G-graded ring with unity, G an infinite group. Then for
any hereditary radical, A, A((R, R#Pg)) = (MR) N Aef(R), A(R#P5)).

Proof: Take z = (z,y) € A((R, R#P¢)). Now y = 3eqy(g)#p,. Since G is infinite
there is an h € G with y(h) = 0. Multiply z on the right by (0, 1#p,) € (0, R#Pg), to
obtain (0, x#py). It is clear that (0, z#py,) is in (0, R#Pg), and since A\((R, R#Pg)) is
an ideal, (0, z#ps) € A((R, R#Pc))N(0, R#Pg) = A((0, R#Pg)) = (0, Ares (R)# Po).
This means that € A\.s(R).

There is a finite set, H, of h € G such that y(Xpcm 1#pn) = y. Now suppose
we multiply z on the right by Y,cg (0, 1#ps). Then we get Ypen (0, z#pn) + (0,y),
which is in (0, Apef(R)#Pg). We know that € \ef(R), so a = Zpen(0, z#py) €
(0, Aref(R)#Pg). And since (0, A\ref(R)#P¢) is an ideal, a + (0,y) —a = (0,y) €
(Oa )‘ref(R)#PG)-

So, in combination with Lemma 5.2.2, A((R, R#Pg)) C (AM(R)NAref(R), M(R#Pc)).

For simplicity, let I = A(R) N Apef(R). It is clear that I < A(R), and thus since
A is hereditary, I € A. We can also see that I = (I, \(R#Pg))/(0, A\(R#Pg)). This
implies that (I, \(R#Ps)) € A\. And by Lemma 5.2.1 we see that it is also an ideal
of (R, R#Pg), so hence is contained in A((R, R#P;)). Hence we have equality. O

Corollary 5.2.4 Let R be a G-graded ring with unity. Then the Jacobson radical of
(R, R#Pc) is (J(R) N Ja(R), Jo(R)#FPc).

Proof: Remember that J(R#Pg) = Ja(R)#Ps. O

In Section 4.1 we noted that for an A-radical, A, A((R, R#Fc)) = (A(R), A\(R)#Pg).
Using the same reasoning, we have that A(R#P;) = MR)#Ps. Thus we get that
A(R) = Aes(R). Hence, for any A-radical, the statement in Theorem 5.2.3 holds.
In Example 4.1.2, we saw that an A-radical need not be hereditary, so the question
becomes whether or not Theorem 5.2.3 holds for all radicals. The following example
shows that it does not.

Example 5.2.5 Let R be a commutative ring with unity. Then R[z] is a Z-graded
ring. Now form the smash product, R[z|# Pz.
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First let us show that R[x]# Pz has no ideals with identity. Assume that I is
an ideal of R[z]#Pz that has an identity, e. Now e = Y1, fi(x)#Dm,. Let m <
min{my,---,m,} and then consider (g(z)#pm)e where 0 # g(x)#pm € I. Such
elements g(z)#pm, exist since, for example, fi(z)#pm, € I, fi(z)z™ ™#p, € 1.
But

(9(2)#tPm)e =) 9(2) fi(2)m—m H#Dm,
and m —m; < 0 for all ¢, and so g(z)#pm = (9(x)#pm)e = 0.

Now let Iy = {R[z]# Pz}, and define I;;; = {S|S is an ideal of a ring in I;}. Let
I =UI. If Sisin Z, then we will show that S does not have an identity.

Assume we have a chain of ideals, A < J, < --- < J; < R[z|#Pg, where A has
an identity, e. Then e is in every ideal in the chain. So we have er € J; for any
r € R[z|#Pz, and then e(er) € Jo. But e(er) = (ee)r = er. So, we can get that
er € A. Therefore A is an ideal of R[z|# Pz, and does not have an identity.

Now the set Z has the property that if R € Z and S < R, then S € Z. We define
a class of rings Uy = {R|R/J € T <= J = R}, and claim that Uz is a radical class.

First, let R € Uz and let R/A be a homomorphic image of R. Now take B<1R/A

and form RTéA, which is a homomorphic image of R/A. This is again in turn a
homomorphic image of R and is isomorphic to R/C for some ideal C' of R. Now

R/C € T if and only if C = R. So B must be equal to R/A. Hence R/A is in Uz.

Next, let A € Uz and R/A € Uz. Then take R/B € 7. If A C B then A< B and

then R/B = £, implying that B/A = R/A. Thus B = R.

If AZ B then (A+ B)/B = A/(AN B) is an ideal of R/B, and hence is in 7.

But that would mean that A C B which contradicts the assumption. Therefore R/B
must not be in 7 except when B = R. So R € Us.

Finally, let J; < J, < --- be an ascending chain of ideals with each J; € 7, and
let J = UJ;- Now take J/A € Z. Note also that J; < J for all i. Thus we get that
Ji/(JinA) = (J; + A)/A is an ideal of J/A, and is therefore in Z. That means that
J; € A. This holds for all . Hence J C A, implying that A = J. Hence J € Uz.
Therefore Uz is a radical class by Definition 4.1.1.

Since no ring in Z has a unity, no ring with unity can be mapped onto a ring in Z.
Thus if S has unity, then Uz(S) = S, where Uz(S) is the largest ideal of S in the class
Uz as in Definition 4.1.1. In particular, Uz((R[z], R[z]#Pz)) = (R[z], R[z]#Pz). But
Uz(R[z]#Pz) = 0, since R[z|#Pz is in Z. So (Uz)ref(R[z]) = 0. Thus

(Uz(R[z]) N (Uz)res(Rlz]), Uz (Rlz]# Pz)) = 0.

This shows that Theorem 5.2.3 does not hold for all radicals. 1
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