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Abstract

It is known that for open manifolds with bounded geometry, the differential form heat
kernel exists and is unique. Furthermore, it has been shown that the components of the
differential form heat kernel are related via the exterior derivative and the coderivative. We
will give a proof of this condition for complete manifolds with Ricci curvature bounded below,
and then use it to give an integral representation of the heat kernel of degree k.
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1 Introduction

In this paper we are considering the differential forms heat equation on manifolds, in particular we
are considering (∆ + ∂t)ω = 0 with Dirichlet initial conditions. Our goal is to produce a formula
for the Green’s function, also known as the heat kernel or fundamental solution, which gives the
solution of this equation.

The solutions of this equation in the case of functions, or 0-forms, is well-known. The work
on differential forms has been much more recent. In 1983, Dodziuk [4] proved that for complete
oriented C∞ Riemannian manifolds with Ricci curvature bounded below, bounded solutions are
uniquely determined by their initial values. In a 1988 paper by Buttig, [1], the author listed in
Appendix A.2 properties of a “good heat kernel”. In 1991, Buttig and Eichhorn [2] were able to
give an existence and uniqueness proof for Buttig’s conjecture for the differential forms heat kernel
on open manifolds of bounded geometry. One of the properties given by Buttig and Eichhorn for a
global heat kernel was that the heat kernels Kk(x,y, t) and Kk+1(x,y, t) are related by

dxKk(x,y, t) = d∗yKk+1(x,y, t). (1.1)

Here, Kk refers to the degree k portion of the heat kernel. We will use the terminology “k-form heat
kernel” to refer to the degree k component of the heat kernel. Using that identity (1.1), we have
previously shown, [5], that the 1-form heat kernel on open Riemann surfaces of bounded geometry
has the form

K1(x,y, t) = (I + ∗x∗y) dxdy

∫ ∞
t

K0(x,y, τ)dτ .

This directly relates the 1-form heat kernel to the 0-form heat kernel, about which more is known.
In this article, we will present a proof of this property for manifolds with Ricci curvature bounded

below, and then use this to give a formula for the k-form heat kernel.
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2 Ricci curvature bounded below

To start, we will established the identity (1.1) for complete manifolds with Ricci curvature bounded
below. We use the condition on the Ricci curvature to guarantee the existence and uniqueness of
the differential forms heat kernel.

Lemma 2.1 For a complete manifold M , with Ricci curvature bounded from below, we have the
following relationship between the k- and (k + 1)-form heat kernels:

1. dxKk(x,y, t) = d∗yKk+1(x,y, t)

2. dyKk(x,y, t) = d∗xKk+1(x,y, t)

Proof: Let E(x,y, t) = dxKk(x,y, t) − d∗yKk+1(x,y, t). We will demonstrate that E satisfies the
heat equation with zero as the initial condition. This will imply, by uniqueness of the solutions of
the heat equation, see [4], that E ≡ 0, giving the desired result.

First

∆xE = ∆xdxKk(x,y, t)−∆xd
∗
yKk+1(x,y, t)

= dx∆xKk(x,y, t)− d∗y∆xKk+1(x,y, t)

= dx(−∂t)Kk(x,y, t)− d∗y(−∂t)Kk+1(x,y, t)

= −∂tE.

Next consider W := 〈E,ω(x)〉, where ω is a suitable test function and 〈µ, ν〉 =
∫
M
µ∧∗ν. Then

lim
t→0+

W = lim
t→0+

〈dxKk, ω(x)〉 −
〈
d∗yKk+1, ω(x)

〉
= lim

t→0+
〈Kk, d

∗
xω(x)〉 − d∗y 〈Kk+1, ω(x)〉

= d∗yω(y)− d∗yω(y) = 0

Since ω was an arbitrary test function, we must have that E ≡ 0 at t = 0. Thus by uniqueness,
E ≡ 0 for all t > 0.

The proof of the second assertion follows in a similar manner. �

We will use this result to give an explicit formula for Kk in terms of Kk±1.

Theorem 2.2 Let M be an open, complete manifold with Ricci curvature bounded below. Then the
differential forms heat kernel obey the following relation:

Kk(x,y, t) = dxdy

∫ ∞
t

Kk−1(x,y, τ)dτ + d∗xd
∗
y

∫ ∞
t

Kk+1(x,y, τ)dτ .

Proof: Let Kk be the k-form heat kernel. Clearly,

Kk(x,y, t) = −
∫ ∞
t

∂

∂τ
Kk(x,y, τ)dτ ,
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since Kk tends to zero (pointwise) as t increases. Since Kk is a solution of the heat equation, we
can replace the time derivative with −∆x = −dxd∗x − d∗xdx, so

Kk(x,y, t) =

∫ ∞
t

(dxd
∗
x + d∗xdx)Kk(x,y, τ)dτ .

Using Lemma 2.1, we can rewrite the above as

Kk(x,y, t) =

∫ ∞
t

dxdyKk−1(x,y, τ) + d∗xd
∗
yKk+1(x,y, τ)dτ .

�

The result in Theorem 2.2 depends mainly on two things: the existence and uniqueness of the
heat kernel, and the pointwise convergence to zero of the kernel for large time. The methods used
above work for a diffusion-type equation provided these conditions are met. For example, for the
diffusion equation (∆ + c∂t)ω = 0, the proofs follow through almost identically.

Corollary 2.3 Let M be an open, n-dimensional, differentiable manifold, with Ricci curvature
bounded below, and consider the differential form diffusion equation (∆+c∂t)ω = 0 with initial data
ω(x, 0) = f(x). Then the Green’s functions are related by

Gk(x,y, t) = dxdy

∫ ∞
ct

Gk−1(x,y, τ)dτ + d∗xd
∗
y

∫ ∞
ct

Gk+1(x,y, τ)dτ .

Proof: Let T = ct, then c∂t = ∂T , so the equation becomes (∆ + ∂T )ω(x, T ) = 0 with the same
initial conditions. So by Theorem 2.2 we have the desired Green’s functions. �

3 Two-dimensional manifolds

In the case of 2-dimensional manifolds, the 0-form and the 2-form heat kernels are isomorphic, as
the following Lemma will show. This allows us to write the 1-form heat kernel in terms of the
0-form, or function, heat kernel.

Lemma 3.1 Let M be a complete manifold with Ricci curvature bounded below. Then the differ-
ential forms heat kernels, Kk and Kn−k are related in the following manner:

Kk = ∗x ∗y Kn−k.

Proof: Consider the equation (∂t + ∆k)u = 0, u(x, 0) = f(x). Then u is given by

u(x, t) = 〈Kk(x,y, t), f(y)〉 =

∫
M

K(x,y, t) ∧y ∗yf(y).
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Since ∗∆k = ∆n−k∗, it follows that ∗xu is a solution of the (n− k)-form heat equation with initial
condition ∗xf(x). So

∗xu(x, t) = 〈Kn−k(x,y, t), ∗yf(y)〉
= 〈∗yf(y), Kn−k(x,y, t)〉

=

∫
M

∗yf(y) ∧y ∗yKn−k(x,y, t)

By applying ∗x to both sides, and changing order in the wedge product, we have

(−1)k(n−k)u(x, t) =

∫
M

(−1)k(n−k) ∗x ∗yKn−k(x,y, t) ∧y ∗yf(y)

or
u(x, t) = 〈∗x ∗y Kn−k(x,y, t), f(y)〉 .

By uniqueness of the heat kernel we have the desired result. �

Corollary 3.2 Let M be an open, complete manifold of dimension 2 with Ricci curvature bounded
below. Then the 1-form heat kernel on M is given by

K1(x,y, t) = (I + ∗x∗y) dxdy

∫ ∞
t

K0(x,y, τ)dτ

where, x,y ∈M and t > 0 and K0 is the 0-form heat kernel.

Proof: Since M has dimension 2, and so K2 = ∗x ∗yK0 by Lemma 3.1. Recall that d∗ ∗ω = −∗dω
for 0-forms, ω. This gives the desired result. �

As an example, consider the case of the hyperbolic plane, with constant curvature −1. From [3]
we have the 0-form heat kernel

K0(x,y, t) =
1

2π

∫ ∞
0

P− 1
2
+iρ(cosh dH2(x,y))ρ exp

(
−
(

1

4
+ ρ2

)
t

)
tanhπρdρ,

which, if we perform the integration set out in Corollary 3.2, we get

K1(x,y, t) =
1

2π
(I + ∗x∗y) dxdy

[∫ ∞
0

P− 1
2
+iρ(cosh dH2(x,y))ρ

exp
(
−
(
1
4

+ ρ2
)
t
)

1
4

+ ρ2
tanhπρdρ

]
.

If M is an open 2-dimensional manifold which has a unique heat kernel for functions, K0, then
Corollary 3.2 suggests a candidate for a heat kernel on 1-forms, and since the K0 and K2 heat
kernels are isomorphic, we would know all the heat kernels. We will now show that K1(x,y, t) =
(I + ∗x∗y)dxdy

∫∞
t
K0(x,y, τ)dτ works as the heat kernel. Given

(∆(1)
x + ∂t)w1(x, t) = 0 (3.2)

w1(x, 0) = f1(x) (3.3)
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we will show that w1 can be written as w1(x, t) = 〈K1(x,y, t), f1(y)〉.
Let w1 be a solution of (3.2) and (3.3), and w(x, t) = 〈K1(x,y, t), f1(y)〉. Since the Laplacian

commutes with the Hodge star isomorphism and the exterior derivative and coderivative, it is clear
that w satisfies equation (3.2). Now we just need to show that w as defined, satisfies the initial
condition (3.3).

w(x, t) =

∫ ∞
t

dx 〈dyK0(x,y, τ), f1(y)〉+ ∗xdx 〈∗ydyK0(x,y, τ), f1(y)〉 dτ

=

∫ ∞
t

dx
〈
K0(x,y, τ), d∗yf1(y)

〉
− ∗xdx 〈K0(x,y, τ), ∗ydyf1(y)〉 dτ

=

∫ ∞
t

dxd
∗
xw1(x, τ)− ∗xdx ∗x dxw1(x, τ)dτ

=

∫ ∞
t

∆w1(x, τ)dτ

=

∫ ∞
t

−∂τw1(x, τ)dτ = w1(x, t)

Since w1 is a solution of the heat equation with initial value f1, and w = w1, this means that w
also has initial value f1. Thus w is a solution of (3.2) and (3.3).

Finally, let us consider the case of compact complete manifolds. In this case, because of conser-
vation, diffusion does not tend to zero, so the large-time limit has to be taken into account.

Theorem 3.3 Let M be a complete manifold with Ricci curvature bounded below, and let the
lim
t→∞

Kk(x,y, t) be a constant double-form, call it C. Then, the heat kernel obeys the following

relation:

Kk(x,y, t) = C + dxdy

∫ ∞
t

Kk−1(x,y, τ)dτ + d∗xd
∗
y

∫ ∞
t

Kk+1(x,y, τ)dτ .

Proof: Let Kk be the k-form heat kernel. Clearly,

Kk(x,y, t) = C −
∫ ∞
t

∂

∂τ
Kk(x,y, τ)dτ ,

since Kk tends to C as t increases. Since Kk is a solution of the heat equation, we can replace the
time derivative with −∆x = −dxd∗x − d∗xdx, so

Kk(x,y, t) = C +

∫ ∞
t

(dxd
∗
x + d∗xdx)Kk(x,y, τ)dτ .

Using Lemma 2.1, we can rewrite the above as

Kk(x,y, t) = C +

∫ ∞
t

(
dxdyKk−1(x,y, τ) + d∗xd

∗
yKk+1(x,y, τ)

)
dτ .

�
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In conclusion, given an open, complete manifold with Ricci curvature bounded below, the com-
ponents of the differential form heat kernel are related as follows:

Kk(x,y, t) = dxdy

∫ ∞
t

Kk−1(x,y, τ)dτ + d∗xd
∗
y

∫ ∞
t

Kk+1(x,y, τ)dτ .

Also, if the manifold is two-dimensional, the components of the heat kernel all depend on the 0-form
heat kernel, K0, with K2 = ∗x ∗y K0 and

K1(x,y, t) = (I + ∗x∗y) dxdy

∫ ∞
t

K0(x,y, τ)dτ .
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