FUNCTIONAL PROGRAMMING IS PROGRAMMING WITHOUT...

e ...selective assignments (bad: a[i] = 6).
— The goal of an imperative program is to change the state [of the machine].

— The goal of a functional programs is to evaluate (reduce, simplify) expressions.

e ...in general, updating assignments(y = x + 1good;x = x + 1 bad):
— A variable in an imperative program: a name for a container,

— There is no proper concept of “variable” in functional programs. What is called
“variable” is a name for an expression.

e ...explicit pointers, storage management.
e ...Input/output.
e ...control structures (loops, conditional statements).

e ...jumps (break, goto, exceptions).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/1

WHAT'S LEFT?

e EXxpressions (without side effects).

— Referential transparency (i.e., substitutivity, congruence).

Definitions (of constants, functions).

— Functions (almost as in mathematics).

Math | Haskell
square square

e Types (including higher-order, polymorphic, and recursively-defined types).
— tuples, lists, and trees, shared sub-structures, implicit cycles.

e Automatic storage management (garbage collection).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/2

WHAT'S LEFT?

e EXxpressions (without side effects).

— Referential transparency (i.e., substitutivity, congruence).

Definitions (of constants, functions).

— Functions (almost as in mathematics).

Math | Haskell
square : N — N squar e
square(z) =z X x

e Types (including higher-order, polymorphic, and recursively-defined types).
— tuples, lists, and trees, shared sub-structures, implicit cycles.

e Automatic storage management (garbage collection).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/2

WHAT'S LEFT?

Expressions (without side effects).
— Referential transparency (i.e., substitutivity, congruence).
Definitions (of constants, functions).

— Functions (almost as in mathematics).

Math | Haskell
square : N — N square :: Integer -> Integer
square(x) =z X x | square X = X * X

A function is defined by a set of rewriting rules.
Types (including higher-order, polymorphic, and recursively-defined types).
— tuples, lists, and trees, shared sub-structures, implicit cycles.

Automatic storage management (garbage collection).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/2

SESSIONS, SCRIPTS, EVALUATION

< godel : 306/ sl i des > ghci

GHC, version 7.4.1: http://ww. haskel | . org/ ghc/

Loadi ng package ghc-prim... linking ...
Loadi ng package integer-gnp ...

Loadi ng package base ... linking ...
Prel ude> 66

66

Prelude> 6 » 7

42

Prel ude> square 35567
<interactive>:4:1: Not in scope:
‘squar e’

Prel ude> : 1 oad exanple

[1 of 1] Conpiling Min

(exanple.hs, interpreted)

Ck, nodul es | oaded: Main.

*Mai n> square 35567

1265011489

*Mai n> square (smaller (5, 78))
25

*Mai n> square (smaller (5+10, 5+10))
225

* Mai n>

linking ...

:? for help
done.
done.

done. (file example.hs)

-- a value (of type Integer):

infty :: Integer
infty = infty + 1

-- a function
-- (fromlnteger to Integer):

square :: Integer -> Integer
square X = X * X

-- anot her functi on:

smal | er (I nteger, I nteger)->I nteger
smal ler (x,y) =if x<=y then x else vy

CS 306, WINTER 2013

FUNCTIONAL PROGRAMMING/3

WHAT’S LEFT? (CONT'D)

e Functions are first order objects.

twice :: (Integer -> Integer) -> (Integer -> |nteger)
twice f =g
where g x = f (f x)

e A program (or script) is a collection of definitions.

e Predefined data types in a nutshell:
— Numerical: Integer, Int, Float, Double.
— Logical: Bool (values: True, False).
— Characters: Char (" a’,’' b’ , etc.).

— Composite: Functional: Integer — Integer;
Tuples: (Int, Int, Float);
Combinations: (Int, Float) — (Float, Bool), Int — (Int — Int).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/4

THINK RECURSIVELY

Instructions for reading a book:

e C: “While not on the end cover repeat: read the current page, set the current
page to the next page.”

e Functional: “If on the end cover, stop. Otherwise, read the first page, then read
recursively the rest of the book.”
e Other examples:

— To climb a ladder, step on the first rung and then climb (recursively) the rest of
the ladder.

— To eat a six-course meal, eat the first meal and then eat (recursively) the rest of
the meal.

e How does one compute the factorial on a number?

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/5

SCRIPTS

e Recall that a program is a collection of definitions of values (including functions).

e Syntactical sugar: definitions by guarded equations:

smaller :: (Integer, Integer) -> |nteger
smal l er (x,Y)

| X <=y =X

| x>y =y

e Recursive definitions:

fact .. Integer -> Integer
fact x = if x==0 then 1 else x * fact (x-1)

e Syntactical sugar: definitions by pattern matching (aka by cases):

fact .. Integer -> Integer
fact 0 = 1
fact x = x = fact (x-1)

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/6

LOCAL DEFINITIONS

e Two forms:
let vl = el def
V2 = e2 where vl = el
v2 = e?2
vk = ek .
I n exp vk = ek

e Definitions are qualified by where clauses, while expressions are qualified by let
clauses.

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/7

SCOPING

e Haskell uses static scoping.

cylinderArea :: Float -> Float -> Fl oat
cylinderArea hr = h x 2 * pi xr + 2% pi 71 %71

cylinderAreal :: Float -> Float -> Fl oat
cylinderAreal hr = x + 2 vy
where x = h = circLength r
y = circArear
CircArea X = pi * X * X
circLength x = 2 » pi * X

cylinderArea2 :: Float -> Float -> Fl oat
cylinderArea2 hr =1let x = h = circLength r
y = circArea r
i

nx + 2 *xy
pi * X * X
:Z*pi*x

where circArea X =
circLength x

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/8

TYPES

e Each type has associated operations that are not necessarily meaningful to other
types.

— Arithmetic operations (4, —, *, /) can be applied to numerical types, but it does
not make any sense to apply them on, say, values of type Bool.

— It does, however make sense to compare (using = (==), = (/ =), < (<=), <, etc.)
both numbers and boolean values.

e Every well formed expression can be assigned a type (strong typing).

— the type of an expression can be inferred from the types of the constituents of
that expression.

— those expression whose type cannot be inferred are rejected by the compiler.

badType x fact :: Integer -> Integer
| x ==0=20 fact x
| x >0 ="p | x <0 = error "Negative argunent.”
| x <0 ="n | x == 0 =1
| x >0 = x *= fact (x-1)

What is the type of error ?

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/9

TWO DATA TYPES

e Booleans . Values: True, False.

— operations on Bool: logic operators: V (||), A (&&), — (not); comparisons: =
(==), & (/ =); relational <, < (<=), >, > (>=).

e Characters . Values: 256 of them, e.g., 'a’, 'b’, "\n’.

— Qerations on characters: comparison, relational;

ord :: Char -> Int Prel ude> i nport Data. Char

chr :: Int -> Char Prel ude Data. Char> ord ’a’
97
Prel ude Data. Char> chr 100
1d1

toLower :: Char -> Char

toLower ¢ | isUpper ¢ = chr (ord c - (ord A - ord "a))

| True =C

where isUpper ¢ = "A <=c¢ & c <=7

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/10

LISTS

e A listis an ordered set of values.

[1,2,3] :: [Int] | [[1,2],[3]] :: [[Int]] | [,] :: [Char]

[div,rem] 2 2?2 | [1/R] :: 27 []:: 7

e Syntactical sugar:

Prelude> ["h', 1]

n hi n

Prelude> "hi" == ["h","i1"]
True

Prelude> [['h',’i"],"there"]
["hi","there"]

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/11

CONSTRUCTING LISTS

e Constructors: [] (the empty list) and : (constructs a longer list).

Prel ude> 1:[2, 3, 4]

[1, 2, 3, 4]
Prelude> "h' "1’ :[]
n hi n

— The operator “:” (pronounced “cons”) is right associative.
— The operator “:” does not concatenate lists together!

Prelude> [1,2,3] : [4, 5]
No i nstance for (Num[tO])
arising fromthe literal ‘4
Possi bl e fix: add an instance declaration for (Num|[tO])
In the expression: 4
In the second argunent of ‘(:)’, nanely ‘[4, 5]’
In the expression: [1, 2, 3] : [4, 5]
Prelude> [1,2,3] : [[4,5]]
[[1,2,3],[4,5]]
Prelude> [1,2,3] ++ [4,5]
[1, 2, 3, 4, 5]
Prel ude>

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/12

OPERATIONS AND PATTERN MATCHING ON LISTS

e Comparisons (<, >, ==, etc.), if possible, are made in lexicographical order.
e Subscript operator: !! (e.g., [1,2,3] !! 1 evaluates to 2) — expensive

e Arguably the most common list processing: Given a list, do something with each and
every element of that list.

— In fact, such a processing is so common that there exists the predefined map
that does precisely this:

map f [] =[]
map f (x:xs) =f x : mp f xs

— This is also an example of pattern matching on lists.
x Variant to pattern matching: head and ta:l (predefined).

head (x:xs) = X map f | =if | ==]]
tail (x:xs) = xs then []
elsef (head I') : map f (tail 1)

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/13

TUPLES

e While lists are homogenous, tuples group values of (posibly) diferent types.

divRem :: Integer -> Integer -> (Integer, |Integer)
divRemx y = (div X y, remx Yy)

divReml :: (Integer, Integer) -> (Integer, |nteger)
di vRemlL (x, 0) = (0, 0)
divRenl (x, y) = (div Xy, remx y)

e The latter variant is also an example of pattern matching on tuples.

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/14

OPERATORS AND FUNCTIONS

e An operator contains symbols from the set #$%&*+./<=>7@\"|: (— and "~ may also

appear, but only as the first character).

e Some operators are predefined (+, —, etc.), but you can define your own as well.

e An (infix) operator becomes (prefix) function if surrounded by brackets. A (prefix)

function becomes operator if surrounded by backquotes:

divRem :: Integer -> Integer -> (Integer, |nteger) Mai n> 3 %% 2

X ‘divRem y = (div x y, remx y)
-- precisely equivalent to
-- divRemx y = (div Xy, remx vy)

(999 :: Integer -> Integer -> (Integer, Integer)
(%9 x vy = (divxy, remxy)

-- precisely equivalent to

-- X Wy = (divxy, remxy)

These are just lexical conventions.

(1,1)

Main> (989 3 2
(1,1)

Mai n> di vRem 3 2
(1,1)

Main> 3 ‘di vRent 2
(1,1)

Mai n>

CS 306, WINTER 2013

FUNCTIONAL PROGRAMMING/15

IDENTIFIERS

e I|dentifiers consist in letters, numbers, simple quotes ('), and underscores (_), but they
must start with a letter.

— For the time being, they must actually start with a lower case letter.

x A Haskell idenitifer starting with a capital letter is considered a type (e.g.,
Bool) or a type constructor (e.g., True)—we shall talk at length about those
later.

x By convention, types (i.e., class names) in Java start with capital letters, and
functions (i.e., method names) start with a lower case letter. What is a con-
vention in Java is the rule in Haskell!

— Some identifiers are language keywords and cannot be redefined (i f, t hen,
el se, | et,where, etc.).

x Some identifiers (e.g., ei t her) are defined in the standard prelude and
possibly cannot be redefined (depending on implementation, messages like
“Definition of variable "either" clashes with inport?).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING/16

