INDUCTION AND RECURSIVE FUNCTIONS

e An inductive proof for a fact P(n), for all n > « consists in two steps:
— Proof of the base case P(«), and

— The inductive step: assume that P(n — 1) is true and show that P(n) is also
true.

Example Proof that all the crows have the same colour: For all sets C' of crows,
|C'| > 1, it holds that all the crows in set C' are identical in colour,

— Base case, |C] = 1: immediate.

— For a set of crows C, |C| = n, remove a crow for the set; the remaining (a
set of size n — 1) have the same colour by inductive assumption. Repeat by
removing other crow. The desired property follows.

Note. According to the Webster's Revised Unabridged Dictionary, crow is “A
bird, usually black, of the genus Corvus [...]”

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/1

INDUCTION AND RECURSIVE FUNCTIONS (CONT’D)

e The same process is used for building recursive functions: One should provide the
base case(s) and the recursive definition(s):

— To write a function f :: Integer — Integer, write the base case (definition for
f 0) and the inductive case (use f (n — 1) to write a definition for f n).

Example Computing the factorial:
x Basecase:fact 0 =1
x Induction step: fact n = n = fact (n-1)

— To write a function f :: [a] — [a], use induction over the length of the argument;
the base case is f [] and the inductive case is f (x : xs) defined using f xs.

Example Write a function that concatenates two lists together. We perform
induction on the length of the first argument:

x Base case: concat [] yS = ys
x Induction step: concat (X:XsS) ys = X : concat XS ysS

e Induction is also an extremely useful tool to prove functions that are already written

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/2

EXAMPLE:. LISTS AS SETS

e Membership (z € A):

e Union (A U B), intersection (A N B), difference (A \ B):

e Constructor: no recursion. makeSet x = [X]

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/3

EXAMPLE:. LISTS AS SETS

e Membership (z € A):

menber x [] = Fal se
menber x (y:ys) | x == = True
| True = menber X ysS

e Union (A U B), intersection (A N B), difference (A \ B):

e Constructor: no recursion. makeSet x = [X]

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/3

EXAMPLE:. LISTS AS SETS

e Membership (z € A):

menber x [] = Fal se
menber x (y:ys) | x ==y = True
| True = menber X ysS

e Union (A U B), intersection (A N B), difference (A \ B):

union [] t =t
uni on (X:xs) t uni on Xs t
X . union Xxs t

| menber x t
| True

i ntersection [] t =[]

I ntersection (x:xs) t | nenber x t

X . Intersection xs t

| True i ntersection xs t
difference [] t =[]
difference (x:xs) t | nenber x t = difference xs t
| True = x : difference xs t
e Constructor: no recursion. makeSet x = [X]

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/3

HIGHER ORDER FUNCTIONS

In Haskell, all objects (including functions) are first class citizens. That is,

e all objects can be named,

e all objects can be members of a list/tuple,

e all objects can be passed as arguments to functions,
e all objects can be returned from functions,

e all objects can be the value of some expression.

twice :: (a->a) ->(a->a) |twce :: (a->a) ->a->a
twice f =g twice f x =f (f x)
where g x = f (f X)

[
>

conpose f ¢ conpose f g x =°f (g x)
where h x = f (g x) -- or --
conpose f g = f.g

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/4

TO CURRY OR NOT TO CURRY

curried form: \ uncurried form:

conpose :: (a->b) -> (c->a) -> c->b conpose :: (a->b, c->a) -> c->b
conpose f g =f.g conpose (f,g) =f.g

e In Haskell, any function takes one argument and returns one values.

— What if we need more than one argument?
Uncurried We either present the arguments packed in a tuple, or

Curried We use partial application: we build a function that takes one argu-
ment and that return a function which in turn takes one argument and returns
another function which in turn. ..

curried: uncurried:
add :: (Numa) =>a ->a -> a add :: (Numa) => (a, a) -> a
add x y = x +vy add (x,y) = x +vy
-- equivalent to the explicit version
-- add x =g
- - where gy =X +vy
incr :: (Numa) =>a -> a incr :: (Numa) =>a -> a
incr = add 1 incr x = add (1, x)

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/5

TO CURRY OR NOT TO CURRY (CONT’D)

What if we have a curried function and we want an uncurried one (or the other way
around)?

e The following two functions are predefined:

curry f =g
where g ab =1f (a,b)
uncurry g = f

where f (a,b) =g ab

or.

Note that the two functions are curried themselves. ..

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/6

TO CURRY OR NOT TO CURRY (CONT’D)

What if we have a curried function and we want an uncurried one (or the other way
around)?

e The following two functions are predefined:

curry f =g
where g ab =1f (a,b)
uncurry g = f

where f (a,b) =g ab
or:

curry f ab =f (a,b)
uncurry g (a,b) =g ab

Note that the two functions are curried themselves. ..

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/6

NON-LOCAL VARIABLES

e Given a nonnegative number x :: Float, write a function mySqrt that computes an
approximation of y/x with precision e = 0.0001.

— Newton says that, if y, is an approximation of \/z, then a better approximation
IS Y1 = (yn + x/yn) /2.

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/7

NON-LOCAL VARIABLES

e Given a nonnegative number x :: Float, write a function mySqrt that computes an
approximation of y/x with precision e = 0.0001.
— Newton says that, if y, is an approximation of \/z, then a better approximation
IS Ynt1 = (yn + 2 /yn) /2.
my Sqr t .. Float -> Float
mySgrt x = sqgrt’ x
where sqrt’ vy =if good y then y else sqgrt’ (inprove y)
good y = abs (y*y - X) < eps
inmprove y = (y + x/y)/2
eps = 0.0001

— x is very similar to a global variable in procedural programming.

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/7

NON-LOCAL VARIABLES

e Given a nonnegative number x :: Float, write a function mySqrt that computes an
approximation of y/x with precision e = 0.0001.

— Newton says that, if y, is an approximation of \/z, then a better approximation
IS Y1 = (yn + x/yn) /2.

my Sqr t .. Float -> Float
mySgrt x = sqgrt’ x
where sqrt’ vy =if good y then y else sqgrt’ (inprove y)
good y = abs (y*y - X) < eps
inmprove y = (y + x/y)/2
eps = 0.0001

— x is very similar to a global variable in procedural programming.
— Even closer to procedural programming:

my Sqr t .. Float -> Float
mySqrt x = until done inprove X
where done y = abs (y*y - X) < eps
inprove y = (y + x/y)/2
eps = 0.0001

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/7

NON-LOCAL VARIABLES

e Given a nonnegative number x :: Float, write a function mySqrt that computes an
approximation of y/x with precision e = 0.0001.

— Newton says that, if y, is an approximation of \/z, then a better approximation
IS Y1 = (yn + x/yn) /2.

my Sqr t .. Float -> Float
mySgrt x = sqgrt’ x
where sqrt’ vy =if good y then y else sqgrt’ (inprove y)
good y = abs (y*y - X) < eps
inmprove y = (y + x/y)/2
eps = 0.0001

— x is very similar to a global variable in procedural programming.
— Even closer to procedural programming:

my Sqr t .. Float -> Float
mySqrt x = until done inprove X
where done y = abs (y*y - X) < eps .
inprove y = (y + x/y)/2 until p
eps = 0. 0001 I P

until :: (a -> Bool) ->
(a->a) ->a->a
f x
X = X
ue = until p f (f x)

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/7

ACCUMULATING RESULTS

nmystery x = aux X []
where aux [] ret = ret
aux (x:xs) ret = aux xs (x:ret)

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/8

ACCUMULATING RESULTS

1.
reverse x = pour X []
where pour [] ret = ret
pour (X:Xs) ret = pour Xxs (Xx:ret)
2.

reverse [] =[]
reverse (X:Xxs) = reverse Xs ++ [X]

e What is the difference between these two implementations?

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/8

MAPS

e map applies a function to each element in a list.

map :: (a ->b) ->[a] ->[Db]

map T [] =[]
map f (x:xs) =f x : mp f xs

e For example:

upto mn =if m>n then [] else m upto (mtl) n
square X = X * X

Prelude> map ((<) 3) [1, 2, 3, 4]

[True, True, Fal se, Fal se]

Prel ude> sum (map square (upto 1 10))
385

Pr el ude>

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/9

MAPS (CONT’D)

e Intermission: zip and unzip.

Prelude> zip [0, 1, 2,3,4] "hell 0"
[(0,"h"),(1,7e),(2,71"),(3,71"),(4,70")]
Prelude> zip [0,1,2,3,4,5,6] "hello"
[(0,"h"),(1,7e),(2,71"),(3,71"),(4,70")]
Prelude> unzip [(0,’h),(1,'¢e),(2,'1"),(4, 0")]
([0, 1, 2,4], "hel 0o")

Pr el ude>

e A more complex (and useful) example of map:

mystery :: (Ord a) => [a] -> Bool
nystery xs = and (map (uncurry (<=)) (zip xs (tail xs)))

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/10

MAPS (CONT’D)

e Intermission: zip and unzip.

Prelude> zip [0, 1, 2,3,4] "hell 0"
[(0,"h"),(1,7e),(2,71"),(3,71"),(4,70")]
Prelude> zip [0,1,2,3,4,5,6] "hello"
[(0,"h"),(1,7e),(2,71"),(3,71"),(4,70")]
Prelude> unzip [(0,’h),(1,'¢e),(2,'1"),(4, 0")]
([0, 1, 2,4], "hel 0o")

Pr el ude>

e A more complex (and useful) example of map:

nondec :: (Ord a) => [a] -> Bool
nondec xs = and (map (uncurry (<=)) (zip xs (tail xs)))

e This finds whether the argument list is in nondecreasing order.

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/10

FILTERS

filter :: (a -> Bool) ->[a] ->[a]

filter p[] =]

filter p (x:xs) =if p x then x : filter xs else filter xs
e Example:

nystery :: [(String,Int)] -> [String]
nystery xs = map fst (filter (((<=) 80) . snd) xs)

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/11

FILTERS

filter :: (a -> Bool) ->[a] ->[a]

filter p[] =]

filter p (x:xs) =if p x then x : filter xs else filter xs
e Example:
get As . [(String,Int)] -> [String]

get As xs = map fst (filter (((<=) 80) . snd) xs)

Prel ude> getAs [("a", 70), ("b",80), ("c",91), ("d", 79)]
["b", " c"]

e The final grades for some course are kept as a list of pairs (student name, grade).
Find all the students that got an A.

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/11

FOLDS

U1 0os 0] 2% e (lne (130 (-0 (I, 0id) ---)))

foldr :: (a->b ->Db) ->b ->[a] ->b
foldr opid|[] =1id
foldr op id (x:xs) =x ‘op* (foldr op id xs)

[11,1o,...,1,] M(---(((idoll)olg)olg)o---oln)

foldl :: (a->b->a) ->a->[b] ->a
foldl opid][] =1id
foldl op id (x:xs) =foldl op (x ‘op' id) xs

e Almost all the interesting functions on lists are or can be implemented using foldr

or foldl:

and = foldr (&%) True concat = foldr (++) []

sum = foldr (+) O | ength = foldr oneplus O

map f = foldr ((:).f) [] where oneplus x n =1 + n

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/12

LIST COMPREHENSION

e Examples:

triples :: Int ->[(Int,Int,Int)]

triples n =[(x,y,2) | x <- [1..n],y < [1..n],z <- [1..n]]
-- or [(x,y,2) | x <~ [1..n],y <- [Xx..n],z <- [z..n]]

pyth :: (Int,Int,Int) -> Bool

pyth (X,y,z) = X*X + y*y = zxZ

triads :: Int -> [(Int,Int,Int)]

triads n = [(X,Y,2) | (xX,y¥,2z) <- triples n, pyth (x,vy,2)]

e General form:

l[exp|geni, geno, ..., geny, guards, guards, . . . guard,]
e Quicksort:
gsort :: (Ord a) =>[a] -> [a]
gsort [] =[]

gsort (x:xs) =qgsort [y | V¥ <- XS, y <= Xx] ++ [x] ++
gsort [y | y < xs, y > x]

CS 306, WINTER 2013 TECHNIQUES AND METHODS IN FUNCTIONAL PROGRAMMING/13

