
LAMBDA NOTATION

• Recall that a function in Haskell accepts one argument and returns one result.

peanuts → chocolate-covered peanuts
raisins → chocolate-covered raisins
ants → chocolate-covered ants

Using the lambda calculus, a general “chocolate-covering” function (or rather λ-
expression) is described as follows:

λx.chocolate-covered x

. . . and then we can get chocolate-covered ants by applying this function:

(λx.chocolate-covered x) ants → chocolate-covered ants

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/1



LAMBDA NOTATION (CONT’D)

• A general covering function:

λy.λx.y-covered x

The result of the application of such a function is itself a function:

(λy.λx.y-covered x) caramel → λx.caramel-covered x

((λy.λx.y-covered x) caramel) ants → (λx.caramel-covered x) ants
→ caramel-covered ants

• Functions can also be parameters to other functions:

λf .(f ) ants

((λf .(f ) ants) λx.chocolate-covered) x → (λx.chocolate-covered x) ants
→ chocolate-covered ants

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/2



HASKELL AND LAMBDA CALCULUS

• In a Haskell program, we write functions and then apply them.

– Haskell programs are nothing more than collections of λ-expressions, with
added sugar for convenience (and diabetes).

– We write a Haskell program by writing λ-expressions and giving names to them.
succ x = x + 1

length = foldr oneplus 0
where oneplus x n = 1+n

Main> succ 10
11

succ = \ x -> x + 1

length = foldr (\ x -> \ n -> 1+n) 0
-- shorthand: (\ x n -> 1+n)

Main> (\ x -> x + 1) 10
11

– Another example: map (\ x -> x+1) [1,2,3] maps (i.e., applies) the λ-
expression λx.x+1 to all the elements of the list, thus producing [2,3,4].

– In general, for some expression E, λx.E (in Haskell-speak: \ x -> E) denotes
the function that maps x to the (value of) E.

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/3



LAMBDA CALCULUS

• The lambda calculus is a formal system designed to investigate function definition,
function application and recursion. It was introduced by Alonzo Church and Stephen
Kleene in the 1930s.

• We start with a countable set of identifiers, e.g., {a, b, c, . . . , x, y, z, x1, x2, . . .} and
we build expressions using the following rules:

LEXPRESSION → IDENTIFIER
LEXPRESSION → λIDENTIFIER.LEXPRESSION (abstraction)
LEXPRESSION → (LEXPRESSION)LEXPRESSION (combination)
LEXPRESSION → (LEXPRESSION)

– In an expression λx.E, x is called a bound variable. A variable that is not bound
is a free variable.

• Syntactical sugar: Normally, no literal constants exist in lambda calculus. We use,
however, literals for clarity.

– Further sugar: HASKELL!!

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/4



REDUCTIONS

• In lambda calculus, an expression (λx.E)F can be reduced to E[F/x] (E[x := F ]
in the textbook). E[F/x] stands for the expression E, where F is substituted for all
the bound occurrences of x.

• In fact, there are three reduction rules:

α: λx.E reduces to λy.E[y/x] if y is not free in E (change of variable).

β: (λx.E)F reduces to E[F/x] (functional application).

γ: λx.(Fx) reduces to F if x is not free in F (extensionality).

• The purpose in life of a Haskell program, given some expression, is to repeatedly
apply these reduction rules in order to bring that expression to its “irreducible” form
(formally, normal form).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/5



INTERMISSION: NO NEED FOR CONSTANTS

• Of course, one would not want to program without constants, but this is in fact pos-
sible:

true = λx.λy.x
false = λx.λy.y
if-then-else = λa.λb.λc.((a)b)c

(((if-then-else)false)caramel)chocolate
β
⇒ (((λa.λb.λc.((a)b)c)λx.λy.y)caramel)chocolate
β
⇒ ((λb.λc.((λx.λy.y)b)c)caramel)chocolate
β
⇒ (λc.((λx.λy.y)caramel)c)chocolate
β
⇒ ((λx.λy.y)caramel)chocolate
β
⇒ (λy.y)chocolate
β
⇒ chocolate

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/6



WHICH ONE?

• You may have noticed that more than one order of reduction is possible in lambda
calculus (and thus in Haskell):

square :: Integer -> Integer
square x = x * x

smaller :: (Integer, Integer) -> Integer
smaller (x,y) = if x<=y then x else y

square (smaller (5,78))
⇒ (def. smaller)

square5
⇒ (def. square)

5× 5
⇒ (def. ×)

25

square (smaller (5,78))
⇒ (def. square)

(smaller (5,78))× (smaller (5,78))
⇒ (def. smaller)

5× (smaller (5,78))
⇒ (def. smaller)

5× 5
⇒ (def. ×)

25

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/7



WHICH ONE? (CONT’D)

• Sometimes it even matters. . .

three :: Integer -> Integer
three x = 3

infty :: Integer
infty = infty + 1

three infty
⇒ (def. infty)

three (infty + 1)
⇒ (def. infty)

three ((infty + 1)+ 1)
⇒ (def. infty)

three (((infty + 1)+ 1)+ 1)
...

three infty
⇒ (def. three)

3

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/8



LAZY HASKELL

• Haskell uses the second variant, called lazy evaluation (normal order, outermost
reduction), as opposed to eager evaluation (applicative order, innermost reduction):

Main> three infty
3

• Why is good to be lazy:

– Doesn’t hurt: If an irreducible form can be obtained by both kinds of reduction,
then the results are guaranteed to be the same.

– More robust: If an irreducible form can be obtained, then lazy evaluation is guar-
anteed to obtain it.

– Even useful: It is sometimes useful (and, given the lazy evaluation, possible) to
work with infinite objects.

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/9



INFINITE OBJECTS

• [1 .. 100] produces the list of numbers between 1 and 100.

– What is produced by [1 .. ]?

Prelude> [1 ..] !! 10
11
Prelude> [1 .. ] !! 12345
12346
Prelude> zip [’a’ .. ’g’] [1 ..]
[(’a’,1),(’b’,2),(’c’,3),(’d’,4),(’e’,5),(’f’,6),(’g’,7)]

– A useful example: the good ol’ prime numbers, this time as a stream:

primes :: [Integer]
primes = sieve [2 .. ]
where sieve (x:xs) = x : [n | n <- sieve xs, mod n x /= 0]

-- alternate:
-- sieve (x:xs) = x : sieve (filter (\ n -> mod n x /= 0) xs)

Main> take 20 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/10



STREAMS AND I/O

• One can implement functions that operate on streams of objects instead of objects.
– An example of generating a stream (and filtering it) is the function sieve.

• A function that operates on streams of characters:

splitLines :: String -> [String]
splitLines str

| line == "bye" = []
| True = line : splitLines rest
where line = takeWhile (/= ’\n’) str

rest = tail (dropWhile (/= ’\n’) str)

joinLines :: [String] -> String
joinLines = concat.(map (++"\n"))

answer :: String -> String
answer str

| take 2 str == "hi" = ">Pleased to meet you"
| True = ">You typed " ++ show (length str) ++

" characters. Good work!"

count :: String -> String
count = joinLines.(map answer).splitLines

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/11



STREAMS AND I/O (CONT’D)

Main> count "hi there\nhow are you\nbye"
">Pleased to meet you\n>You typed 11 characters. Good work!\n"

Main> putStr (count "hi there\nhow are you\nbye")
>Pleased to meet you
>You typed 11 characters. Good work!

Main> interact count
hi there
>Pleased to meet you
how are you
>You typed 11 characters. Good work!
bye

• Input (from keyboard) and output (to terminal) are themselves streams.

interact :: (String -> String) -> IO ()

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/12



STREAMS AND I/O (CONT’D)

Main> count "hi there\nhow are you\nbye"
">Pleased to meet you\n>You typed 11 characters. Good work!\n"

Main> putStr (count "hi there\nhow are you\nbye")
>Pleased to meet you
>You typed 11 characters. Good work!

Main> interact count
hi there
>Pleased to meet you
how are you
>You typed 11 characters. Good work!
bye

• Input (from keyboard) and output (to terminal) are themselves streams.

interact :: (String -> String) -> IO ()

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/12



STREAMS AND I/O (CONT’D)

Main> count "hi there\nhow are you\nbye"
">Pleased to meet you\n>You typed 11 characters. Good work!\n"

Main> putStr (count "hi there\nhow are you\nbye")
>Pleased to meet you
>You typed 11 characters. Good work!

Main> interact count
hi there
>Pleased to meet you
how are you
>You typed 11 characters. Good work!
bye

• Input (from keyboard) and output (to terminal) are themselves streams.

interact :: (String -> String) -> IO ()

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/12



MEMO FUNCTIONS

• Streams can also be used to improve efficiency (dramatically!)

• Take the Fibonacci numbers:

fib :: Integer -> Integer
fib 0 = 1
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

– Complexity? O(2n)

• Now take them again, using a memo stream:

fastfib :: Integer -> Integer
fastfib n = fibList %% n

where fibList = 1 : 1 : zipWith (+) fibList (tail fibList)
(x:xs) %% 0 = x
(x:xs) %% n = xs %% (n - 1)

– Complexity? O(n)

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/13



STRUCTURAL INDUCTION

• The induction principle is not limited to functions defined over the integers. Rather,
mathematical induction over the natural numbers is an instance of the more general
notion of structural induction over values of an inductively (or recursively) defined
type:

To prove property P on some inductively defined (algebraic) type T , we prove that

Base case. P holds for the base cases of the definition of T , and

Inductive case. P holds for the inductive cases of the definition of T , assuming that
P holds for the components of type T of the inductive definitions.

• Example of inductively defined type:

data Nat = Zero | Succ Nat

Zero is the base case, and Succ Nat is the inductive case. Thus, to prove that
P(n) holds for any n::Nat, we show that (a) P(Zero) holds (base), and (b) if P(n)
holds, then so does P(Succ n) (inductive step).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/14



EXAMPLES OF STRUCTURAL INDUCTION

• Recall that we defined arithmetic operators over Nat:

instance Num Nat where
m + Zero = m -- (1)
m + (Succ n) = Succ (m + n) -- (2)
m * Zero = Zero
m * (Succ n) = (m * n) + m

• Let us prove that Zero + n = n for all n::Nat.

Base: For n=Zero we have Zero + Zero = Zero by case (1).

Inductive step: We assume that Zero + n = n (inductive assumption) and we
prove that Zero + Succ n = Succ n:

Zero + Succ n = Succ (Zero + n)
(by (2))

= Succ n
(Zero + n = n by inductive assumption).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/15



EXAMPLES OF STRUCTURAL INDUCTION (CONT’D)

• A tree is another inductively defined type:

data BTree a = Null | Node a (BTree a) (BTree a)

• To prove that a property P(t) holds for any t::BTree a, we show that (a) P(Null)
holds (base), and (b) if, for any x::a, both P(lt) and P(rt) hold, then so does
P(Node x lt rt) (inductive step).

• Example: the height and size of a tree are computed by the following functions:
height :: BTree a -> Int
height Null = 0
height (Node x lt rt) = 1 +

max (height lt) (height rt)

size :: BTree a -> Int
size Null = 0
size (Node x lt rt) = 1 +

size lt + size rt

– We want to show that size t ≤ 2height t for all t::BTree a.

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/16



EXAMPLES OF STRUCTURAL INDUCTION (CONT’D)

• Direct proof of

size t ≤ 2height t (1)

left as exercise.

• I will instead prove the stronger relation:

size t ≤ 2height t − 1. (2)

• Relation (1) follows immediately from Relation (2).

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/17



EXAMPLES OF STRUCTURAL INDUCTION (CONT’D)

Base: size Null = 0 = 1− 1 = 20 − 1 = 2height Null − 1.

Inductive step:

size (Node x lt rt) = 1 + size lt + size rt
(by def. size)

≤ 1 + 2height lt − 1 + 2height rt − 1
(by inductive assumption for both lt and rt)

≤ 2height lt + 2height rt − 1
(arithmetic)

≤ 2h + 2h − 1
(with h = max (height lt) (height rt))

= 21+h − 1
(arithmetic)

= 2height (Node x lt rt) − 1
(by def. of h and height, as desired)

CS 306, WINTER 2013 FUNCTIONAL PROGRAMMING: ADVANCED CONCEPTS/18


