
AN ADVENTURE GAME

• Consider the following knowledge base:

location(egg,duck_pen).
location(ducks,duck_pen).
location(fox,woods).
location(you,house).

connect(yard,house).
connect(yard,woods).

is_closed(gate).
connect(duck_pen,yard) :- is_open(gate).

• We want to move around, be able to open and close the gate, pick the egg, and so
on.

• In order to do this we need to modify the knowledge base dynamically.

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/1



MODIFYING THE KNOWLEDGE BASE

• Adding a fact to the knowledge base:

– assert adds the fact given as argument somewere

– asserta adds the fact given as argument at the beginning of the knowledge
base

– assertz adds the fact given as argument at the end

– all variants succeed only once

• Removing a fact from the knowledge base:

– retract removes one instance that unifies with the argument

– removes one more instance at each redo attempt

– fails when no removal is possible

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/2



CONVINCING THE KNOWLEDGE BASE TO ALLOW CHANGES

• All the industrial grade PROLOG implementations compile the knowledge base as to
increase the speed of retrieving facts from it.

– SWI PROLOG is one such an example

• In these variants, you need to specify which facts are changeable at run time.

– These predicates will be stored separately, in an un-optimized fashion

– The dynamic declaration must precede the predicate definition

:- dynamic(you_have/1),
dynamic(location/2),
dynamic(is_closed/1),
dynamic(is_open/1).

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/3



DON’T DO IT. . .

• . . . unless strictly necessary

• self-modifying code is notoriously hard to get right and debug

• searching the knowledge base looses a great deal of efficiency

– knowledge base search is a crucial process, even the slightest slow down has
dramatic effects

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/4



ADVENTURE GAME (CONT’D)

• Moving around:

goto(X) :-
location(you,L),
(connect(L,X); connect(X,L)),
retract(location(you,L)),
assert(location(you,X)),
write(’ You are in the ’),
write(X), nl.

goto(X) :- write(’ You cannot get there ’), nl.

• Picking up the egg:

pick(egg) :-
location(you,duck_pen),
not you_have(egg),
assert(you_have(egg)),
write(’ You picked the egg ’), nl.

pick(X) :- write(’ There is nothing to pick ’), nl.

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/5



ADVENTURE GAME (CONT’D)

• Opening the gate:

open(gate) :-
location(you,yard),
is_closed(gate),
retract(is_closed(gate)),
assert(is_open(gate)),
write(’ Opened. ’), nl.

open(X) :- write(’ You cannot open that ’), nl.

• How the other creatures react:

ducks :-
is_opened(gate),
retract(location(ducks,duck_pen)),
assert(location(ducks,yard)).

ducks.

fox :-
location(ducks,yard),
location(you,house),
write(’ The fox has taken a duck ’), nl.

fox.

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/6



ADVENTURE GAME (CONT’D)

• The main loop:

go :- done.
go :-

write(’>>’),
read(X),
call(X),
go.

done :-
location(you,house),
you_have(egg),
ducks, fox,
write(’ Thanks for getting the egg. ’), nl.

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/7



SAMPLE INTERACTION

?- go.
>>goto(yard).
You are in the yard
>>goto(duck_pen).
You cannot get there from here
>>pick(egg).
There is nothing to pick
>>open(gate).
Opened.
>>goto(duck_pen).
You are in the duck_pen
>>pick(egg).
You picked the egg
>>goto(house).
You cannot get there from here
>>goto(yard).
You are in the yard
>>goto(house).
You are in the house
The fox has taken a duck
Thanks for getting the egg.
yes

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/8



FOL: THE WEAKEST LINK

• Resolution or modus ponens are exact

– there is no possibility of mistake if the rules are followed exactly.

• These methods of inference (also known as deductive methods) require that infor-
mation be complete, precise, and consistent.

• By contrast, the real world requires common sense reasoning in the face of incom-
plete, inexact, and potentially inconsistent information.

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/9



INCOMPLETE FACTS

• A logic is monotonic if the truth of a sentence does not change when more facts are
added. FOL is monotonic.

• A logic is non-monotonic if the truth of a proposition may change when new informa-
tion (facts) is added or old information is deleted.

“It rained last night if the grass is wet and the sprinkler was not on last
evening. I am looking right now and see that the grass is wet.”
Did it rain last night?

rained :- grass_is_wet,
\+ sprinkler_was_on.

grass_is_wet.

?- rained.
Yes
?- assert(sprinkler_was_on).
Yes
?- rained.
No
?- retract(sprinkler_was_on).
Yes
?- rained.
Yes

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/10



CIRCUMSCRIPTION

• Similar to the closed world assumption but more precise

• We specify particular predicates that are “as false as possible”

– Meaning that they are false for all the objects except for those for which we know
them to be true

bird(X) ∧ ¬abnormal(X) → flies(X)

provided that abnormal is circumscribed

– We draw the conclusion that flies(tweety) out of bird(tweety) provided that
we do not know that abnormal(tweety) holds

• Implemented in Prolog by the not predicate (more or less)

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/11



NON-MONOTONIC LOGIC

• Default logic adds a new inference rule: if α is true and β is not known to be false
then γ:

α : β

γ
e.g.,

grass is wet : ¬sprinkler was on

rained

• Nonmonotonic logic adds a new operator M:

α ∧Mβ → γ

stands for “if α is true and β is not known to be false then γ.” e.g.,

grass is wet ∧M¬sprinkler was on → rained

american(X) ∧ adult(X)∧
M(∃A : (car(A) ∧ owns(X,A))) → (∃A : (car(A) ∧ owns(X,A)))

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/12



NONMONOTONIC LOGIC IN PROLOG

• Prolog implements nonmonotonic logic using not/1 (as seen earlier)

– The only difference is that the “not known to be false” part must have a negated
formulation

– Direct nonmonotonic statements can be formulated using !/0, though the for-
mulation is a bit more verbose

Typically, vehicles have four wheels. Trucks are vehicles. They have 18
wheels.

vehicle(a).
vehicle(b).
vehicle(X) :- truck(X).
truck(c).

wheels(X,18) :- vehicle(X), truck(X),!.
wheels(X,4) :- vehicle(X).

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/13



MORE DYNAMICALLY GENERATED STUFF

• The name of a structure can never be a variable (even if that variable is actually
bound):

?- write(p(b)).
p(b)
Yes

?- P = p, write(P(b)).
ERROR: Syntax error: Operator expected

• We can go around this limitation using the predicate =../2 (pronounced “univ”) that
builds a structure for us out of a list of objects (the first object will be the name of the
structure, the rest the arguments)

?- X =.. [a, b, c]. ?- a(b, c) =.. L. ?- a(b, c) =.. [a|L].
X = a(b, c). L = [a, b, c]. L = [b, c].

?- P = p, S =.. [P,b], write(S).
p(b)
P = p,
S = p(b).

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/14



MORE DYNAMICALLY GENERATED STUFF

• The name of a structure can never be a variable (even if that variable is actually
bound):

?- write(p(b)).
p(b)
Yes

?- P = p, write(P(b)).
ERROR: Syntax error: Operator expected

• We can go around this limitation using the predicate =../2 (pronounced “univ”) that
builds a structure for us out of a list of objects (the first object will be the name of the
structure, the rest the arguments)

?- X =.. [a, b, c]. ?- a(b, c) =.. L. ?- a(b, c) =.. [a|L].
X = a(b, c). L = [a, b, c]. L = [b, c].

?- P = p, S =.. [P,b], write(S).
p(b)
P = p,
S = p(b).

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/15



SIDESTEPPING PROLOG’S SEARCH STRATEGY

• Find all the values that satisfy a predicate: findall(Object,Goal,List) pro-
duces a List of all Object that satisfy Goal

– Object is usually just a variable, but can be any structure using the variables
from Goal

– findall/3 succeeds exactly once (even if there is no way to satisfy the goal,
case in which we get back the empty list)

?- findall(X,parent(X,peter),L). parent(adam,peter).
L = [adam, eve]. parent(eve,peter).

parent(adam,paul).
?- findall(son(Y,X),parent(X,Y),L). parent(mary,paul).
L = [son(peter, adam), son(peter, eve),

son(paul, adam), son(paul, mary)].

?- findall(son(Y,X),parent(margaret,Y),L).
L = [].

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/16



SIDESTEPPING PROLOG’S SEARCH STRATEGY (CONT’D)

• findall/3 is useful in sidestepping the default search strategy; interesting exam-
ple: breath-first search

bsearch(Initial,Final,Result) :-
bsearch([pair(Initial,[])],Final,[Initial],Result).

bsearch([pair(Final,Moves)|_],Final,_,Result) :- reverse(Moves,Result).

bsearch([pair(Final,_)|Rest],Final,Visited,Result) :- % other solutions...
bsearch(Rest,Final,Visited,Result),!. % no backtracking needed since

% we perform the search by hand!

bsearch([pair(Current,Moves)|Rest],Final,Visited,Result) :-
findall(pair(B,[M|Moves]),

(move(Current,B,M),not(member(B,Visited))),
Bag), % Fails on redo! This effectively eliminates

% Prolog’s own search strategy on Current
% (however, Prolog’s backtracking is used as a while
% loop in order to expand the states from Rest).

append(Rest,Bag,L),
bsearch(L,Final,[Current|Visited],Result).

CS 306, WINTER 2013 MODIFYING THE KNOWLEDGE BASE AND SEARCH STRATEGY/17


