
FUNCTIONAL PROGRAMMING IS PROGRAMMING WITHOUT. . .

• . . . selective assignments (bad: a[i] = 6).

– The goal of an imperative program is to change the state [of the machine].

– The goal of a functional programs is to evaluate (reduce, simplify) expressions.

• . . . in general, updating assignments (y = x + 1 good; x = x + 1 bad):

– A variable in an imperative program: a name for a container.

– There is no proper concept of “variable” in functional programs. What is called
“variable” is a name for an expression.

• . . . explicit pointers, storage management.

• . . . input/output.

• . . . control structures (loops, conditional statements).

• . . . jumps (break, goto, exceptions).
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WHAT’S LEFT?

• Expressions (without side effects).

– Referential transparency (i.e., substitutivity, congruence).

• Definitions (of constants, functions).

– Functions (almost as in mathematics).

Math Haskell
square : N → N

square(x) = x× x
square :: Integer -> Integer
square x = x * x

A function is defined by a set of rewriting rules.

• Types (including higher-order, polymorphic, and recursively-defined types).

– tuples, lists, and trees, shared sub-structures, implicit cycles.

• Automatic storage management (garbage collection).
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SESSIONS, SCRIPTS, EVALUATION

< godel:306/slides > ghci
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> 66
66
Prelude> 6 * 7
42
Prelude> square 35567
<interactive>:4:1: Not in scope:
‘square’
Prelude> :load example
[1 of 1] Compiling Main
( example.hs, interpreted )
Ok, modules loaded: Main.

*Main> square 35567
1265011489

*Main> square (smaller (5, 78))
25

*Main> square (smaller (5*10, 5+10))
225

*Main>

(file example.hs)

-- a value (of type Integer):

infty :: Integer
infty = infty + 1

-- a function
-- (from Integer to Integer):

square :: Integer -> Integer
square x = x * x

-- another function:

smaller :: (Integer,Integer)->Integer
smaller (x,y) = if x<=y then x else y
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WHAT’S LEFT? (CONT’D)

• Functions are first order objects.

twice :: (Integer -> Integer) -> (Integer -> Integer)
twice f = g

where g x = f (f x)

• A program (or script) is a collection of definitions.

• Predefined data types in a nutshell:

– Numerical: Integer, Int, F loat, Double.

– Logical: Bool (values: True, False).

– Characters: Char (’a’, ’b’, etc.).

– Composite: Functional: Integer → Integer;
Tuples: (Int, Int, F loat);
Combinations: (Int, F loat) → (F loat,Bool), Int → (Int → Int).
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THINK RECURSIVELY

Instructions for reading a book:

• C: “While not on the end cover repeat: read the current page, set the current
page to the next page.”

• Functional: “If on the end cover, stop. Otherwise, read the first page, then read
recursively the rest of the book.”

• Other examples:

– To climb a ladder, step on the first rung and then climb (recursively) the rest of
the ladder.

– To eat a six-course meal, eat the first meal and then eat (recursively) the rest of
the meal.

• How does one compute the factorial on a number?
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SCRIPTS

• Recall that a program is a collection of definitions of values (including functions).

• Syntactical sugar: definitions by guarded equations:

smaller :: (Integer, Integer) -> Integer
smaller (x,y)

| x <= y = x
| x > y = y

• Recursive definitions:

fact :: Integer -> Integer
fact x = if x==0 then 1 else x * fact (x-1)

• Syntactical sugar: definitions by pattern matching (aka by cases):

fact :: Integer -> Integer
fact 0 = 1
fact x = x * fact (x-1)
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LOCAL DEFINITIONS

• Two forms:

let v1 = e1
v2 = e2
.
.
.
vk = ek

in exp

def
where v1 = e1

v2 = e2
.
.
.
vk = ek

• Definitions are qualified by where clauses, while expressions are qualified by let
clauses.
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SCOPING

• Haskell uses static scoping.

cylinderArea :: Float -> Float -> Float
cylinderArea h r = h * 2 * pi * r + 2 * pi * r * r

cylinderArea1 :: Float -> Float -> Float
cylinderArea1 h r = x + 2 * y

where x = h * circLength r
y = circArea r
circArea x = pi * x * x
circLength x = 2 * pi * x

cylinderArea2 :: Float -> Float -> Float
cylinderArea2 h r = let x = h * circLength r

y = circArea r
in x + 2 * y

where circArea x = pi * x * x
circLength x = 2 * pi * x
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TYPES

• Each type has associated operations that are not necessarily meaningful to other
types.

– Arithmetic operations (+, −, ∗, /) can be applied to numerical types, but it does
not make any sense to apply them on, say, values of type Bool.

– It does, however make sense to compare (using = (==), 6= (/=), ≤ (<=), <, etc.)
both numbers and boolean values.

• Every well formed expression can be assigned a type (strong typing).

– the type of an expression can be inferred from the types of the constituents of
that expression.

– those expression whose type cannot be inferred are rejected by the compiler.

badType x
| x == 0 = 0
| x > 0 = ’p’
| x < 0 = ’n’

fact :: Integer -> Integer
fact x

| x < 0 = error "Negative argument."
| x == 0 = 1
| x > 0 = x * fact (x-1)

What is the type of error?
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TWO DATA TYPES

• Booleans . Values: True, False.

– operations on Bool: logic operators: ∨ (||), ∧ (&&), ¬ (not); comparisons: =
(==), 6= (/=); relational <, ≤ (<=), >, ≥ (>=).

• Characters . Values: 256 of them, e.g., ’a’, ’b’, ’\n’.

– Oerations on characters: comparison, relational;
ord :: Char -> Int
chr :: Int -> Char

Prelude> import Data.Char
Prelude Data.Char> ord ’a’
97
Prelude Data.Char> chr 100
’d’

toLower :: Char -> Char
toLower c | isUpper c = chr (ord c - (ord ’A’ - ord ’a’))

| True = c
where isUpper c = ’A’ <= c && c <= ’Z’
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LISTS

• A list is an ordered set of values.

[1,2,3] :: [Int] [[1,2], [3]] :: [[Int]] [′h′,′ i′] :: [Char]

[div, rem] :: ?? [1,′ h′] :: ?? [ ] :: ??

• Syntactical sugar:

Prelude> [’h’,’i’]
"hi"
Prelude> "hi" == [’h’,’i’]
True
Prelude> [[’h’,’i’],"there"]
["hi","there"]
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CONSTRUCTING LISTS

• Constructors: [ ] (the empty list) and : (constructs a longer list).

Prelude> 1:[2,3,4]
[1,2,3,4]
Prelude> ’h’:’i’:[]
"hi"

– The operator “:” (pronounced “cons”) is right associative.
– The operator “:” does not concatenate lists together!

Prelude> [1,2,3] : [4,5]
No instance for (Num [t0])

arising from the literal ‘4’
Possible fix: add an instance declaration for (Num [t0])
In the expression: 4
In the second argument of ‘(:)’, namely ‘[4, 5]’
In the expression: [1, 2, 3] : [4, 5]

Prelude> [1,2,3] : [[4,5]]
[[1,2,3],[4,5]]
Prelude> [1,2,3] ++ [4,5]
[1,2,3,4,5]
Prelude>
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OPERATIONS AND PATTERN MATCHING ON LISTS

• Comparisons (<, ≥, ==, etc.), if possible, are made in lexicographical order.

• Subscript operator: !! (e.g., [1,2,3] !! 1 evaluates to 2) – expensive

• Arguably the most common list processing: Given a list, do something with each and
every element of that list.

– In fact, such a processing is so common that there exists the predefined map
that does precisely this:

map f [] = []
map f (x:xs) = f x : map f xs

– This is also an example of pattern matching on lists.

∗ Variant to pattern matching: head and tail (predefined).
head (x:xs) = x
tail (x:xs) = xs

map f l = if l == []
then []
else f (head l) : map f (tail l)
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TUPLES

• While lists are homogenous, tuples group values of (posibly) diferent types.

divRem :: Integer -> Integer -> (Integer, Integer)
divRem x y = (div x y, rem x y)

divRem1 :: (Integer, Integer) -> (Integer, Integer)
divRem1 (x, 0) = (0, 0)
divRem1 (x, y) = (div x y, rem x y)

• The latter variant is also an example of pattern matching on tuples.
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OPERATORS AND FUNCTIONS

• An operator contains symbols from the set !#$%&*+./<=>?@\ˆ|: (− and ˜ may also
appear, but only as the first character).

• Some operators are predefined (+, −, etc.), but you can define your own as well.

• An (infix) operator becomes (prefix) function if surrounded by brackets. A (prefix)
function becomes operator if surrounded by backquotes:

divRem :: Integer -> Integer -> (Integer, Integer)
x ‘divRem‘ y = (div x y, rem x y)
-- precisely equivalent to
-- divRem x y = (div x y, rem x y)

(%%) :: Integer -> Integer -> (Integer, Integer)
(%%) x y = (div x y, rem x y)
-- precisely equivalent to
-- x %% y = (div x y, rem x y)

Main> 3 %% 2
(1,1)
Main> (%%) 3 2
(1,1)
Main> divRem 3 2
(1,1)
Main> 3 ‘divRem‘ 2
(1,1)
Main>

These are just lexical conventions.
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IDENTIFIERS

• Identifiers consist in letters, numbers, simple quotes (’), and underscores ( ), but they
must start with a letter.

– For the time being, they must actually start with a lower case letter.

∗ A Haskell idenitifer starting with a capital letter is considered a type (e.g.,
Bool) or a type constructor (e.g., True)—we shall talk at length about those
later.

∗ By convention, types (i.e., class names) in Java start with capital letters, and
functions (i.e., method names) start with a lower case letter. What is a con-
vention in Java is the rule in Haskell!

– Some identifiers are language keywords and cannot be redefined (if, then,
else, let, where, etc.).

∗ Some identifiers (e.g., either) are defined in the standard prelude and
possibly cannot be redefined (depending on implementation, messages like
“Definition of variable "either" clashes with import”).
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