
KNOWLEDGE REPRESENTATION

• A proposition is a logical statement that can be either false or true.

• In order to work with propositions, one needs a formal system, that is, a symbolic
logic.

• A particular form used in symbolic logic is the predicate calculus, or the first-order
logic.

– Another Turing complete formalism.
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THE PREDICATE CALCULUS

• A term is a constant, structure, or variable.

• An atomic proposition (or predicate) denotes a relation. It is composed of a functor,
that names the relation, and an ordered list of terms (parameters): secure(room),
likes(bob, steak), black(crow), capital(ontario, toronto).

• Variables can appear only as arguments. They are free:

capital(ontario,X)

unless bounded by one of the quantifiers ∀ and ∃:

∃X : (capital(ontario,X))

∀Y : (capital(Y, toronto))

• A compound proposition (formula) is composed of atomic propositions, connected
by logical operators: ¬, ∧, ∨, → (⇒). Variables may be bound using quantifires.

∀X.(crow(X) → black(X))

∃X.(crow(X) ∧white(X))

∀X.(dog(fido) ∧ (dog(X) → smelly(X)) → smelly(fido))
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SEMANTICS OF THE PREDICATE CALCULUS

• Sentences are true with respect to a model and an interpretation.

– The model contains objects and relations among them

– An interpretation is a triple I = (D,φ, π), where

∗ D (the domain) is a nonempty set; elements of D are individuals.

∗ φ is a mapping that assigns to each constant an element of D.

∗ π is a mapping that assigns to each predicate with n arguments a function
p : Dn → {True, False} and to each function of k arguments a function
f : Dk → D.

The interpretation specifies referents for
constant symbols → objects (individuals)
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true iff the objects referred
to by term1, . . . , termn are in the relation referred to by predicate.
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SEMANTICS OF THE PREDICATE CALCULUS: EXAMPLE
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KNOWLEDGE REPRESENTATION IN PROLOG

• Prolog is a logic/descriptive language.

• Allows the specification of the problem to be solved using

– known facts about the objects in the universe of the problem (unit clauses):

locked(window).
dark(window).
capital(ontario,toronto).

– rules for inferring new facts from the old ones.

– queries or goals about objects and their properties.
The program answers such queries, based on the existing facts and rules.

?- locked(window).
No
?- [’test.pl’].
Yes
?- locked(window).
Yes
?- locked(door).
No
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CONSTANTS AND VARIABLES

• A variable in Prolog is anything that starts with a capital letter or an underscore (“ ”).

• A constant is a number or atom. An atom is:

– Anything that starts with a lower case letter followed by letters, digits, and under-
scores.

– Any number of the following symbols:
+,-, * ,/,\,˜,<,>,=,’,ˆ,:,.,?,@,#,$,$,& .

– Any of the special atoms [],{},!,;,% .

– Anything surrounded by single quotes:
’this is an atom surrounded by quotes!.’

∗ Escape sequence: just double the escaped character:
’how to insert ’’ in an atom’

NB: The predicate calculus is called first-order logic because no predicate can take
as argument another predicate, and no predicate can be a variable.
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CLAUSAL FORM

• There are many ways of stating the same formula:

∀X.∀Y.(p(X) → q(Y ))

∀X.∀Y.(¬p(X) ∨ q(Y ))

• But any formula can be expressed in the conjunctive normal form:

(A11 ∨A12 ∨ . . . A1n1
) ∧ (A21 ∨A22 ∨ . . . A2n2

) ∧ . . . ∧ (Ak1 ∨Ak2 ∨ . . . Aknk
)

• Then, we can drop the ∧ operators, we obtain in this way a set of clauses, and thus
we get the clausal form:

{ (A11 ∨A12 ∨ . . . ∨A1n1
),

(A21 ∨A22 ∨ . . . ∨A2n2
),

. . .

(Ak1 ∨Ak2 ∨ . . . ∨Aknk
) }
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INTERLUDE: CONVERSION TO CLAUSAL FORM

Any sentence (or KB) can be transformed into a clausal form.
¬((a ↔ b) ∨ (c → ¬(d ∧ (f → e))))

1. Eliminate ↔ and →: α → β is changed to ¬α ∨ β, and α ↔ β is equivalent to
(α → β) ∧ (β → α).

¬(((¬a ∨ b) ∧ (¬b ∨ a)) ∨ (¬c ∨ (¬(d ∧ (¬f ∨ e)))))

2. Apply De Morgan rules to move all the negations in, and remove double negations.
¬((¬a ∨ b) ∧ (¬b ∨ a)) ∧ ¬(¬c ∨ (¬(d ∧ (¬f ∨ e))))

(¬(¬a ∨ b) ∨ ¬(¬b ∨ a)) ∧ (¬¬c ∧ (¬¬(d ∧ (¬f ∨ e))))
((a ∧ ¬b) ∨ (b ∧ ¬a)) ∧ (c ∧ (d ∧ (¬f ∨ e)))

3. Use the distributedness, associativity and commutativity to move the ∧’s out: α ∨
(β ∧ γ) becomes (α ∨ β) ∧ (α ∨ γ).

((a ∨ (b ∧ ¬a)) ∧ (¬b ∨ (b ∧ ¬a))) ∧ c ∧ d ∧ (¬f ∨ e)
(a ∨ b) ∧ (a ∨ ¬a) ∧ (¬b ∨ b) ∧ (¬b ∨ ¬a) ∧ c ∧ d ∧ (¬f ∨ e)

(a ∨ b) ∧ (¬b ∨ ¬a) ∧ c ∧ d ∧ (¬f ∨ e)

4. Clausal form is therefore:
{ (a ∨ b), (¬b ∨ ¬a), c, d, (¬f ∨ e)}
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CLAUSAL FORM (CONT’D)

• A Horn clause is a clause in which exactly one atomic proposition is not negated

A ∨ ¬B ∨ ¬C ∨ ¬D

B ∧ C ∧D → A

– A clause that contain exactly one atomic proposition is also a (degenerate form
of) Horn clause.

• Any FOL formula can be converted in conjunctive normal form, but not all the FOL
formulae can be converted into a set of Horn clauses.

• A Prolog program is a set of Horn clauses.
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RULES

• Natural Language:

The window is locked. If the light is off and the door is locked, the room is
secure. The light is off if the window is dark. The window is dark.

• Clausal form:

locked(window)
dark(window)
¬off(light) ∨ ¬locked(door) ∨ secure(room)

or: off(light) ∧ locked(door) → secure(room)
¬dark(window) ∨ off(light)

or: dark(window) → off(light)

• The Prolog program:

dark(window).
locked(window).
secure(room) :- off(light), locked(door).
off(light) :- dark(window).
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QUERIES

• Now, one can ask something:

?- off(light).
Yes

?- secure(room).
No

?- locked(door).
No

?- locked(Something).
Something = window
Yes

?- locked(Something).
Something = window ;
No

– Query variables are all existentially quantified
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CONJUNCTIVE RULES

• A family tree:

parent(ann,bob). parent(ann,calvin).
parent(bob,dave). parent(dave,helen).

parent(ann,bob) parent(ann,calvin) parent(bob,dave) parent(dave,helen)

parent(X,Y)

• Other family relations:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
siblings(X,Y) :- parent(Z,X),parent(Z,Y), not(X = Y).

parent(X,Z)

grandparent(X,Y)

parent(Z,Y) parent(Z,X) parent(Z,Y) not (X = Y)

siblings(X,Y)

• All the rule variables are universally quantified
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DISJUNCTIVE RULES

• Yet another family relation:
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

ancestor(X,Y)

parent(X,Y) parent(X,Z) ancestor(Z,Y)

• A person is happy if she is healthy, wealthy, or wise:
happy(Smb) :- person(Smb),happy(Smb).
happy(Smb) :- person(Smb),healthy(Smb).
happy(Smb) :- person(Smb),wise(Smb).

person(Smb)

happy(Smb)

happy(Smb) person(Smb) healthy(Smb) person(Smb) wealthy(Smb)
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PREDICATE CALCULUS PROOFS

Application of inference rules: sound generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm.

Inference rules: Generalized resolution

α ∨ β′, ¬β′′ ∨ γ, ∃σ : β = β′
σ ∧ β = β′′

σ

ασ ∨ γσ

and Generalized modus ponens

α1, . . . , αn, α′
1 ∧ · · · ∧ α′

n → β, ∃σ : (α1)σ = (α′
1)σ ∧ · · · ∧ (αn)σ = (α′

n)σ
βσ
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PROOF BY CONTRADICTION

KB
Bob is a buffalo 1. buffalo(bob)
Pat is a pig 2. pig(pat)
Buffaloes outrun pigs 3. buffalo(X) ∧ pig(Y ) → faster(X,Y )
Query
Is something outran by something else? faster(U, V )
Negated query: 4. faster(U, V ) → �

(1), (2), and (3), σ = {X/bob, Y/pat} 5. faster(bob, pat)
(4) and (5), σ = {U/bob, V/pat} �

• All the substitutions regarding variables appearing in the query are typically reported
(why?).
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INFERENCE AND MULTIPLE SOLUTIONS

65

1

Ancestor(Ann,x) =>

Parent(Ann,x) => 55

Parent(Ann,b) Parent(b,x) => 2

Parent(Cecil,x) => 3

Ancestor(Ann,b) Ancestor(b,x) =>

{x/Bob}

{a/Ann,c/x}

{x/Bob}

{b/Cecil}

{x/Dave}

{x/Dave}

{a/Ann,b/x}

(1) parent(ann, bob)
(2) parent(ann, cecil)
(3) parent(cecil, dave)
(4) parent(cecil, eric)
(5) parent(A,B) → Ancestor(A,B)
(6) ancestor(A,B) ∧ ancestor(B,C) → ancestor(A,C)
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SEARCHING THE KNOWLEDGE BASE

parent(ann,calvin). 2 ?- trace(parent).
parent(ann,bob). parent/2: call redo exit fail
parent(bob,dave). Yes
parent(dave,helen). [debug] 3 ?- parent(ann,X).

T Call: ( 7) parent(ann, _G365)
T Exit: ( 7) parent(ann, calvin)

X = calvin ;
T Redo: ( 7) parent(ann, _G365)
T Exit: ( 7) parent(ann, bob)

X = bob ;
No

Fail

Call Exit

Redo

parent(ann,X)

X=calvin  ;

X=bob  ;
(2)

(1)

(1)

(2)
No

?− parent(ann,X).
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SEARCHING THE KNOWLEDGE BASE (CONT’D)

parent(ann,calvin).
parent(ann,bob).
parent(bob,dave).
parent(dave,helen).
grandparent(X,Y) :- parent(X,Z),parent(Z,Y).

[debug] 8 ?- grandparent(X,Y). T Redo: (8) parent(_G382, _L 224)
T Call: (7) grandparent(_G382, _G383) T Exit: (8) parent(bo b, dave)
T Call: (8) parent(_G382, _L224) T Call: (8) parent(dave, _G 383)
T Exit: (8) parent(ann, calvin) T Exit: (8) parent(dave, hel en)
T Call: (8) parent(calvin, _G383) T Exit: (7) grandparent(b ob, helen)
T Fail: (8) parent(calvin, _G383)
T Redo: (8) parent(_G382, _L224) X = bob
T Exit: (8) parent(ann, bob) Y = helen ;
T Call: (8) parent(bob, _G383) T Redo: (8) parent(_G382, _L2 24)
T Exit: (8) parent(bob, dave) T Exit: (8) parent(dave, helen )
T Exit: (7) grandparent(ann, dave) T Call: (8) parent(helen , _G383)

T Fail: (8) parent(helen, _G383)
X = ann T Fail: (7) grandparent(_G382, _G383)
Y = dave ;

No
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SEARCHING THE KNOWLEDGE BASE (CONT’D)

Fail

Call Exit

Redo

parent(X,Z)

Fail

Call Exit

Redo

parent(Z,Y)

X/ann
Z/bob

callX/ann
Z/bob

exit

X/ann
Z/calvin

grandparent(X,Y)

parent(Z,Y)

X/ann
Z/calvin

call
redo

parent(X,Z)

parent(ann,bob)

call
exit

call

parent(bob,dave)

parent(dave,helen)

fail

X/ann
Z/bob
Z/dave

exit

X/ann
Z/calvin

X/ann
Z/bob

exit

call

exit

parent(ann,calvin)
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RECURSIVE PREDICATES

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

• A recursive call is treated as a brand new call, with all the variables renamed.

Fail

Call Exit

Redo

Fail

Call Exit

Redo

Fail

Call Exit

Redo

Fail

Call Exit

Redo

parent(X,Z) ancestor(Z,Y)

ancestor(X,Y)

ancestor(Z,Y)

parent(Z,Z1) ancestor(Z1,Y)
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UNIFICATION

• There are no explicit assignments in Prolog.

• Bindings to variables are made through the process of unification, which is done
automatically most of the time.

– The predicate =/2 is used to request an explicit unification of its two arguments.
?- book(prolog,X) = book(Y,brna).
X = brna
Y = prolog

– The binding {X/brna,Y/prolog} is the most general unifier.
– The most general unifier can contain free variables: the general unifier of

book(prolog,X) = book(Y,Z) is {Y/brna,X/Z}.

∗ even if {Y/prolog,X/brna,Z/brna} is also a unifier, it is not the most general.

• In passing, note that the following predicates are different, even if they have the same
name.

tuple(1,2). % tuple/2 ?- tuple(X,Y).
tuple(1,2,3). % tuple/3 X = 1
tuple(a,b,c). % tuple/3 Y = 2 ;
tuple(a,b,c,d). % tuple/4 No
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UNIFICATION (CONT’D)

• Unification can be attempted between any two Prolog entities. Unification succeeds
of fails. As a side effect, free variables may become bound.

[debug] 10 ?- parent(ann,Y). [debug] 11 ?- parent(X,ann).
T Call: ( 7) parent(ann, _G371) T Call: ( 7) parent(_G370, ann )
T Exit: ( 7) parent(ann, calvin) T Fail: ( 7) parent(_G370, an n)

Y = calvin No
Yes

• Once a variable is bound through some unification process, it cannot become free
again.

[debug] 15 ?- X=1, X=2.
T Call: ( 7) _G340=1
T Exit: ( 7) 1=1
T Call: ( 7) 1=2
T Fail: ( 7) 1=2

No

• Do not take =/2 to mean assignment!
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UNIFICATION AND STRUCTURES

• What is the result of X = pair(1,2) ?

?- X = pair(1,2).

X = pair(1, 2)

• A structure has the same syntax as a predicate. The difference is that a structure
appears as a parameter.

• You do not have to define a structure, you just use it. This is possible because of the
unification process.

• Example: Binary search trees.

CS 306, WINTER 2013 LOGIC PROGRAMMING/23

UNIFICATION AND STRUCTURES (EXAMPLE)

% if I found the element, then succeed.
member_tree(X,tree(X,L,R)).

% otherwise, if my element is larger than
% the current key, then I search in the right
% child.
member_tree(X,tree(Y,L,R)) :- X > Y,

member_tree(X,R).

% ...and eventually search in the left child...
member_tree(X,tree(Y,L,R)) :- X < Y,

member_tree(X,L).

% an empty tree cannot contain any element, so
% anything else fails...
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SEARCH TREES (CONT’D)

?- member_tree(3,nil).
No

[debug] ?- member_tree(3,tree(2,tree(1,nil,nil),tree( 3,nil,nil))).
T Call: ( 7) member_tree(3, tree(2, tree(1, nil, nil), tree( 3, nil, nil)))
T Call: ( 8) member_tree(3, tree(3, nil, nil))
T Exit: ( 8) member_tree(3, tree(3, nil, nil))
T Exit: ( 7) member_tree(3, tree(2, tree(1, nil, nil),tree( 3, nil, nil)))

Yes

[debug] ?- member_tree(5,tree(2,tree(1,nil,nil),tree( 3,nil,nil))).
T Call: ( 7) member_tree(5, tree(2, tree(1, nil, nil),tree( 3, nil, nil)))
T Call: ( 8) member_tree(5, tree(3, nil, nil))
T Call: ( 9) member_tree(5, nil)
T Fail: ( 9) member_tree(5, nil)
T Redo: ( 8) member_tree(5, tree(3, nil, nil))
T Fail: ( 8) member_tree(5, tree(3, nil, nil))
T Redo: ( 7) member_tree(5, tree(2, tree(1, nil, nil),tree( 3, nil, nil)))
T Fail: ( 7) member_tree(5, tree(2, tree(1, nil, nil),tree( 3, nil, nil)))

No
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LISTS

• Lists are nothing special, just a structure named “.”, and containing two parameters
– the first one is the elements at the head of the list,
– the second is a structure “.”, or the empty list “[]”.

• That is, .(X,XS) is equivalent to Haskell’s (x::xs) .

• The difference from Haskell is given by the absence of types in Prolog: A list can
contain any kind of elements.

• As in Haskell, there is some syntactic sugar:

– One can enumerate the elements: [1,[a,4,10],3] .
– The expression [X|Y] is equivalent to .(X,Y) .
– We also have the equivalence between [X,Y,Z|R] and .(X,.(Y,.(Z,R))) ,

and so on.
?- [b,a,d] = [d,a,b].
?- [X|Y] = [a,b,c].
?- [X|Y] = [].
?- [[X1|X2]|X3] = [[1,2,3],4,5].

• The absence of types in Prolog is brought to extremes: the list [1] is the structure
.(1,[]) . However, the empty list [] is an atom!
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LIST PROCESSING
• Membership:

member(X,[X|_]).
member(X,[_|Y]) :- member(X,Y).

• What is the answer to the query ?- member(X,[1,2,3,4]). ?

– Normally, both arguments of member/2 are bound (we write henceforth
member(+E,+L) ). In fact, member/2 also works as member(-E,+L) . The
general specification is member(?E,+L) .

• There are no functions in Prolog. What if we want that our program to compute a
value?

– We invent a new variable that will be bound to the result by various unification
processes.

• A predicate for appending two lists: append/3 .
append([],L,L).
append([X|R],L,[X|R1]) :- append(R,L,R1).

• What is the result of the query ?- append(X,Y,[1,2,3,4]). ?
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NUMBERS AND OPERATIONS ON NUMBERS

• What means “3+4” to Prolog? (as in ?- X = 3 + 4. )
• In order to actually evaluate an arithmetic expression, one must use the operator

is(?Var,+Expr) :

?- X is 3+4
X = 7
Yes

• Example: A Prolog program that receives one number n and computes n!

fact_a(1,1).
fact_a(N,R) :- R is N * fact_a(N-1,R1).
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NUMBERS AND OPERATIONS ON NUMBERS

• What means “3+4” to Prolog? (as in ?- X = 3 + 4. )
• In order to actually evaluate an arithmetic expression, one must use the operator

is(?Var,+Expr) :

?- X is 3+4
X = 7
Yes

• Example: A Prolog program that receives one number n and computes n!

fact_a(1,1).
fact_a(N,R) :- R is N * fact_a(N-1,R1).

13 ?- fact_a(1,X).
X = 1
Yes
14 ?- fact_a(2,X).
[WARNING: Arithmetic: ‘fact_a/2’ is
not a function]

ˆ Exception: ( 8) _G185 is
2* fact_a(2-1, _G274) ?
[WARNING: Unhandled exception]
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NUMBERS AND OPERATIONS ON NUMBERS

• What means “3+4” to Prolog? (as in ?- X = 3 + 4. )
• In order to actually evaluate an arithmetic expression, one must use the operator

is(?Var,+Expr) :

?- X is 3+4
X = 7
Yes

• Example: A Prolog program that receives one number n and computes n!

fact_a(1,1). fact(1,1).
fact_a(N,R) :- R is N * fact_a(N-1,R1). fact(N,R) :- N1 is N-1,

fact(N1,R1),
13 ?- fact_a(1,X). R is N * R1.
X = 1
Yes ?- fact(5,X).
14 ?- fact_a(2,X). X = 120
[WARNING: Arithmetic: ‘fact_a/2’ is Yes
not a function]

ˆ Exception: ( 8) _G185 is
2* fact_a(2-1, _G274) ?
[WARNING: Unhandled exception]
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NUMBERS (CONT’D)

• All the expected operators on numbers work as expected. One annoying difference:
the operator for ≤ is not <=, but =< instead!

• Given the call fact(5,X) , what happens if one requests a new solution after Prolog
answers X=120? Why?

fact(1,1).
fact(N,R) :- N1 is N-1, fact(N1,R1), R is N * R1.

?- fact(5,X).

X = 120 ;
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