
Introduction to Software Specifications

Stefan D. Bruda

CS 310, Winter 2025



CS 310: INTRO TO SOFTWARE SPECIFICATIONS

Coordinates:
Course Web page: http://cs.ubishops.ca/home/cs310
Instructor: Stefan Bruda
(http://bruda.ca, stefan@bruda.ca, Johnson 114B, ext. 2374)
Office hours?

Textbook (required): R. D. Tennent, Specifying Software: A Hands-On
Introduction, Cambridge University Press, 2002

Two subjects:
Formal languages
Program specification and reasoning about program correctness

CS 310 (S. D. Bruda) CS 310, Winter 2025 1 / 5



FORMAL LANGUAGES

Describe problems in a formal way so that we can reason about them
(syntax)
Describe how a problem can be solved computationally (semantics)
Example of the impact of theory to practice

Lexical and parsing stages of compiler construction
Use of regular expressions in text editors
State-charts in object-oriented modeling
Circuit design
DNA and protein sequence matching
Behaviour of reactive systems

Also useful in answering fundamental questions such as whether there
exist tasks/problems that cannot be solved algorithmically and, if yes,
which tasks are algorithmically solvable and which are not

CS 310 (S. D. Bruda) CS 310, Winter 2025 2 / 5



FORMAL LANGUAGES (CONT’D)

Formal languages = the mathematics of strings of symbols
Alphabet = a finite, nonempty set of elements (symbols, tokens,
characters)
String (word) over an alphabet Σ = finite sequence of symbols of Σ (a
string in Σ∗)

ε = the empty string
Examples: cat, dog, mouse, Fluffy, xzrbstuph, 0011011100, -36.557

Language over Σ = set of strings over Σ
Examples:

The English language
{w : w is the name of a cat}
{n ∈ {0, 1}∗ : ∃ x , y , z ∈ N : xn + yn = zn}
{g ∈ (N×N)∗ : the graph g has a Hamiltonian path}

Finite (or not), finite representation (or not), mathematical representation
We want to analyze how problems are solved computationally, so we study
formal (systematic, computational) descriptions

CS 310 (S. D. Bruda) CS 310, Winter 2025 3 / 5



PROGRAM SPECIFICATION

A program transforms input values to output values in a particular way, so
a specification describes transformations from input values to output
values
Therefore a specification consists in the following parts:

What the input will be
What the output should be
What is the environment in which the specification/program should work

Input and output refer to things that can be observed: input and output
variables and constraints on the variables
The formalization of a specification consists in the following:

Declarative interface: static properties of the identifiers
Pre-conditions: assertion on input values that the program will be given
Post-condition: assertion on output values, possibly in relation to input
values

CS 310 (S. D. Bruda) CS 310, Winter 2025 4 / 5



PROGRAM SPECIFICATION (CONT’D)

A specification is a contract: the software designer agrees to establish
the post-condition if the program is started in a way that satisfies the
pre-condition

If the program is run in a context not covered by the pre-condition, it can run
in any way without “breaking” the contract

In this course we will develop logic-based techniques to verify
correctness of small programs (algorithms)

That is, the goal is to prove that a program does what a specification says it
should do
We use logical formulas (assertions) as comments in programs

We assert that the formula should be true when flow of control reaches it

Such techniques are generally too time consuming to be used directly
with large software systems

In these cases formal methods are used instead
Combination of program specification and formal languages!

CS 310 (S. D. Bruda) CS 310, Winter 2025 5 / 5


