Introduction to Software Specifications

Stefan D. Bruda

CS 310, Winter 2025



CS 310: INTRO TO SOFTWARE SPECIFICATIONS

@ Coordinates:
o Course Web page: http://cs.ubishops.ca/home/cs310
o Instructor: Stefan Bruda
(http://bruda.ca, stefan@bruda.ca, Johnson 114B, ext. 2374)
e Office hours?
@ Textbook (required): R. D. Tennent, Specifying Software: A Hands-On
Introduction, Cambridge University Press, 2002

@ Two subjects:

e Formal languages
@ Program specification and reasoning about program correctness

CS 310 (S. D. Bruda) CS 310, Winter 2025 1/5



FORMAL LANGUAGES

@ Describe problems in a formal way so that we can reason about them
(syntax)

@ Describe how a problem can be solved computationally (semantics)

@ Example of the impact of theory to practice

Lexical and parsing stages of compiler construction

Use of regular expressions in text editors

State-charts in object-oriented modeling

Circuit design

DNA and protein sequence matching

@ Behaviour of reactive systems

@ Also useful in answering fundamental questions such as whether there
exist tasks/problems that cannot be solved algorithmically and, if yes,
which tasks are algorithmically solvable and which are not

CS 310 (S. D. Bruda) CS 310, Winter 2025 2/5



FORMAL LANGUAGES (CONT’D)

@ Formal languages = the mathematics of strings of symbols

@ Alphabet = a finite, nonempty set of elements (symbols, tokens,
characters)
@ String (word) over an alphabet X = finite sequence of symbols of ¥ (a
string in ©*)
o ¢ =the empty string
e Examples: cat, dog, mouse, Fluffy, xzrbstuph, 0011011100, -36.557
@ Language over X = set of strings over ©
o Examples:
@ The English language
@ {w: wisthe name of a cat}
o {ne{0,1}*:3x,y,ze N: x"+y" = 2"}
@ {g € (N x N)* : the graph g has a Hamiltonian path}
o Finite (or not), finite representation (or not), mathematical representation
e We want to analyze how problems are solved computationally, so we study
formal (systematic, computational) descriptions

CS 310 (S. D. Bruda) CS 310, Winter 2025 3/5



PROGRAM SPECIFICATION

@ A program transforms input values to output values in a particular way, so
a specification describes transformations from input values to output
values

@ Therefore a specification consists in the following parts:
e What the input will be
e What the output should be
o What is the environment in which the specification/program should work
@ Input and output refer to things that can be observed: input and output
variables and constraints on the variables

@ The formalization of a specification consists in the following:

e Declarative interface: static properties of the identifiers

e Pre-conditions: assertion on input values that the program will be given

e Post-condition: assertion on output values, possibly in relation to input
values

CS 310 (S. D. Bruda) CS 310, Winter 2025 4/5



PROGRAM SPECIFICATION (CONT’D)

@ A specification is a contract: the software designer agrees to establish
the post-condition if the program is started in a way that satisfies the
pre-condition

o If the program is run in a context not covered by the pre-condition, it can run
in any way without “breaking” the contract

@ In this course we will develop logic-based techniques to verify
correctness of small programs (algorithms)

e Thatis, the goal is to prove that a program does what a specification says it
should do
o We use logical formulas (assertions) as comments in programs
@ We assert that the formula should be true when flow of control reaches it
@ Such techniques are generally too time consuming to be used directly
with large software systems
o Inthese cases formal methods are used instead
e Combination of program specification and formal languages!

CS 310 (S. D. Bruda) CS 310, Winter 2025 5/5



