Alphabets, strings, and languages

Stefan D. Bruda

CS 310, Winter 2025

ALPHABETS AND STRINGS

@ Alphabet X: a finite set of symbols

@ Strings (not sets!) over an alphabet

@ The set of all strings over ¥: ¥*; Empty string: ¢
@ Operations on strings:

e Length (Jw|), concatenation (- or juxtaposition), substring, suffix, prefix

@ ¢ is the identity for concatenation (sw = we = w)
@ astring w is a trivial prefix, suffix and substring of itself
@ ¢ is atrivial prefix, suffix and substring of any string

o Length over a set A: |w|, is the length of the string w from which all the
symbols not in A have been erased

@ Abuse of notation: |w|, is a shorthand for [w|; 4
o Exponentiation: w” = n copies of w concatenated together
@ Recursive definition: w® = ; w1 = wiw

o Reversal: w=c = wl =¢;forae ¥: w = ua = wl = au®

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025

FORMAL LANGUAGES

@ (Formal) language: well defined set of strings; example: ©*
@ Abuse of notation: For a € X we simply write a instead of {a}

@ Operations: union (U, +), intersection (N), difference (\), complement
(A=2"\A)

e Union is commutative, associative, and idempotent, with () as identity

@ Concatenation: LiLp = {wyws : wy € Ly Aws € Ly}

o Associative, distributive to +, identity: e, zero: 0

@ Exponentiation: L" = {wiws...w,:V1 <i<n:w;elL}

@ Closure (Kleene closure): '
L*={wywz---wp :n>0AV1<i<n:wel}=5%,,L
(Lr=e4+L"+12413+4...) -

@ Recursion: L = f(L)

e B=c¢+0B1

@ The empty string is an element of B
@ Forany b € B, 0b1 is also a string in B
@ These are the only elements of B

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 2/5

FORMAL LANGUAGES (CONT’D)

@ Recursion (contd):

@ Another example: P=¢+0+1+40P0 + 1P1
o How to solve a recursive equation L = f(L) defined using only e, symbols in
¥, union, and concatenation:

o L0=@
[+ FOI’_/':O,1,2,...Z Lj+1:f(Lj)
o L=Usol

o Note that L above is the smallest solution of the equation L = f(L)
o '=f(LYy=>LCL

e The scheme above is also generalizable to k mutually recursive equations
@ Suchas L= f(L,M)and M = g(L, M) (for k = 2)

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 3/5

KEY PROBLEMS IN FORMAL LANGUAGES

@ Specification: formalized notations for rigorous definitions
@ Realization: systematic methods for programming recognizers

o Classification: organize the space of formal languages into a hierarchy of
classes
e Languages can be classified by the set of operations used to define them
o All the languages defined using only symbols from X, union, and
concatenation are finite languages; we can define every finite language if we

add e and
e Languages defined using only union, concatenation, and closure from
symbols from X, ¢, and) are called regular languages

@ A language description as above is called a regular expression

e Languages defined using only union, concatenation, and recursion from
symbols from I, £, and () are called context-free languages

@ A language description as above is called a context-free grammar
o finite C regular C context-free C unrestricted

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025

[F::
PRACTICAL EXAMPLES OF REGULAR EXPRESSIONS -

([+=]1+¢2)0—9][0—9]".[0 — 9][0 — 9" (E([+—] + &)[0 — 9][0 — 9]" + &)

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter2025 5/5

PRACTICAL EXAMPLES OF REGULAR EXPRESSIONS -

([+=]1+¢2)0—9][0—9]".[0 — 9][0 — 9" (E([+—] + &)[0 — 9][0 — 9]" + &)

letter. = [A—Za—2Zz]
digit = [0-9]
id = letter_ (letter. + digit)”
digits = digit digit*
fraction = . digits
exp = E ([+-]+¢) digits
number = digits fraction? exp?
if = if
then = then
else = else
relop = < 4+ >4+ <=+ >=+4+ == +1=

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 5/5

PRACTICAL EXAMPLES OF REGULAR EXPRESSIONS

([+=]1+¢2)0—9][0—9]".[0 — 9][0 — 9" (E([+—] + &)[0 — 9][0 — 9]" + &)

letter. = [A—Za—2Zz]
digit = [0-9]
id = letter_ (letter. + digit)”
digits = digit digit*
fraction = . digits
exp = E ([+-]+¢) digits
number = digits fraction? exp?
if = if
then = then
else = else
relop = <+ >+ <=+ >= + == +!=

NG, NG *\) 100\ ([0-9]%\)$
= \2 \1:\, (downcase (concat (substring \2 0 1) \1)):CS\3

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 5/5

