State Transition Diagrams

Stefan D. Bruda

CS 310, Winter 2025

STATE TRANSITION DIAGRAMS

- Finite directed graph
- Edges (transitions) labeled with symbols from an alphabet
- Nodes (states) labeled only for convenience
- One initial state
- Several accepting states

• A string $c_1c_2c_3 \dots c_n$ is accepted by a state transition diagram if there exists a path from the starting state to an accepting state such that the sequence of labels along the path is c_1, c_2, \dots, c_n

- Same state might be visited more than once
- Intermediate states might be accepting (but it does not matter)
- The set of exactly all the strings accepted by a state transition diagram is the language accepted (or recognized) by the state transition diagram

DETERMINISTIC FINITE AUTOMATA

- A state diagram describes graphically a deterministic finite automaton (DFA), a machine that at any given time is in one of finitely many states, and whose state changes according to a predetermined way in response to a sequence of input symbols
- Formal definition: a deterministic finite automaton is a tuple $M = (K, \Sigma, \delta, s, F)$
 - K ⇒ finite set of states
 - $\Sigma \Rightarrow$ input alphabet
 - $F \subseteq K \Rightarrow$ set of accepting states
 - $s \in K \Rightarrow$ initial state
 - $\delta: K \times \Sigma \to K \Rightarrow$ transition function

SOFTWARE REALIZATION

- Big practical advantages of DFA: very easy to implement:
 - Interface to define a vocabulary and a function to obtain the input tokens

```
typename vocab; /* alphabet + end-of-string */
const vocab EOS; /* end-of-string pseudo-token */
vocab gettoken(void); /* returns next token */
```

Variable (state) changed by a simple switch statement as we go along

```
int main (void) {
   typedef enum {SO, S1, ... } state;
   state s = S0; vocab t = gettoken();
   while ( t != EOS ) {
       switch (s) {
           case S0: if (t == ...) s = ...; break;
                    if (t == ...; break;
           case S1: ...
       } /* switch */
       t = gettoken(); } /* while */
   /* accept iff the current state s is final */
}
```

SOFTWARE REALIZATION: EXAMPLE


```
typedef enum {ZERO, ONE, EOS} vocab;
vocab gettoken(void) {
    int c = getc(stdin);
    if (c == '0') return ZERO;
    if (c == '1') return ONE;
    if (c == '\n') return EOS;
    perror("illegal character"); }
int main (void) {
    typedef enum {SO, S1 } state;
    state s = S0; vocab t = gettoken();
    while ( t != EOS ) {
        switch (s) {
            case S0: if (t == ONE) s = S1; break;
                  /* if (t == ZERO) s = SO; break */
            case S1: if (t == ONE) s = S0; break;
                  /* if (t == ZERO) s = S1; break */ } /* switch */
        t = gettoken(); } /* while */
    if (s != S0) printf("String not accepted.\n");
```

Nondeterminism

- So far the state diagrams are deterministic = for any pair (state, input symbol) there can be at most one outgoing transition
- A nondeterministic diagram allows for the following situation:

• The acceptance condition remains unchanged:

- Why nondeterminism?
 - Simplifies the construction of the diagram

- A nondeterministic diagram can be much smaller than the smallest possible deterministic state diagram that recognizes the same language
- Also known as nondeterministic finite automata (NFA)

Nondeterminism

- So far the state diagrams are deterministic = for any pair (state, input symbol) there can be at most one outgoing transition
- A nondeterministic diagram allows for the following situation:

- The acceptance condition remains unchanged:
 - A string $c_1c_2c_3...c_n$ is accepted by a state transition diagram if there exists some path from the starting state to an accepting state such that the sequence of labels along the path is $c_1, c_2, ..., c_n$
- Why nondeterminism?
 - Simplifies the construction of the diagram

- A nondeterministic diagram can be much smaller than the smallest possible deterministic state diagram that recognizes the same language
- Also known as nondeterministic finite automata (NFA)

SOFTWARE REALIZATION

 As above, except that we have to keep track of a set of states at any given time

```
typedef enum { Q0, Q1, Q2, Q3 } state;
int main (void) {
    vocab t = gettoken(); StateSet A; A.include(Q0);
    while (t != EOS) {
        StateSet NewA;
        for (state s in A) {
            switch (s) {
              case Q0: NewA.include(Q0);
                       if (t == 'm') NewA.include(Q1); break;
              case Q1: if (t == 'a') NewA.include(Q2); break;
              case Q2: if (t == 'n') NewA.include(Q3); break;
              case Q3: break;
        A = NewA; t = gettoken();
    }
    /* accept iff (Q3 in A) */
}
```

SOFTWARE REALIZATION (CONT'D)

- This kind of implementation is fine for "throw-away" automata
 - Text editor search function searches for a pattern in the text
 - The next search is likely to be different so a brand new automaton needs to be created
- Some times the automaton is created once and then used multiple times
 - The lexical structure of a programming language is well established
 - Lexical analysis in a compiler is accomplished by an automaton that never changes
 - In such a case it is more efficient to precalculate the set of states
 - Exactly as in the previous program
 - Except that we no longer have an input to guide us, so we calculate the sets NewA for all possible inputs
 - We obtain a DFA that is equivalent to the given NFA (i.e., recognizes the same language)

PRECALCULATING STATE SETS

 Precalculating all the sets of states effectively constructs a deterministic state transition diagram that is equivalent to the original (nondeterministic) state transition diagram:

```
algorithm Determinize(M = (K, \Sigma, \Delta, s, F)) returns M' = (K', \Sigma, \delta', s', F'):
      S \leftarrow \{\{s\}\}
                                                                                         (active states)
      K' \leftarrow \emptyset
                                                                                          (done states)
                                                                          (start with no transitions)
     while S \neq \emptyset do
           Choose A \in S
                                                                                    (any state will do)
           S \leftarrow S \setminus \{A\}
           K' \leftarrow K' \cup \{A\}
                                                                           (state A processed now)
                                                 (each action will lead to a new state NewA)
           foreach a \in \Sigma do
                  NewA \leftarrow \emptyset
                 foreach (p, a, q) \in \Delta \land p \in A do
                       NewA \leftarrow NewA + q (for every p in A and p \stackrel{a}{\rightarrow} q we add q)
                 if NewA \neq \emptyset then (if NewA is empty then there is no transition)
                       Add to \delta' transition A \stackrel{a}{\rightarrow} NewA
                       if NewA \notin S \cup K' then if NewA is processed we are done (otherwise we add it to the queue)
```

PRECALCULATING STATE SETS

 Precalculating all the sets of states effectively constructs a deterministic state transition diagram that is equivalent to the original (nondeterministic) state transition diagram:

```
algorithm Determinize(M = (K, \Sigma, \Delta, s, F)) returns M' = (K', \Sigma, \delta', s', F'):
     S \leftarrow \{\{s\}\}
                                                                                     (active states)
     K' \leftarrow \emptyset
                                                                                     (done states)
                                                                      (start with no transitions)
     while S \neq \emptyset do
           Choose A \in S
                                                                                (any state will do)
           S \leftarrow S \setminus \{A\}
           K' \leftarrow K' \cup \{A\}
                                                                       (state A processed now)
                                              (each action will lead to a new state NewA)
           foreach a \in \Sigma do
                 NewA \leftarrow \emptyset
                foreach (p, a, q) \in \Delta \land p \in A do
                      NewA \leftarrow NewA + q (for every p in A and p \stackrel{a}{\rightarrow} q we add q)
                 if NewA \neq \emptyset then (if NewA is empty then there is no transition)
                      Add to \delta' transition A \stackrel{a}{\rightarrow} NewA
                      if NewA \notin S \cup K' then if NewA is processed we are done
                        S \leftarrow S \cup \{NewA\} (otherwise we add it to the queue)
     s' \leftarrow \{s\}
```

PRECALCULATING STATE SETS

 Precalculating all the sets of states effectively constructs a deterministic state transition diagram that is equivalent to the original (nondeterministic) state transition diagram:

```
algorithm Determinize(M = (K, \Sigma, \Delta, s, F)) returns M' = (K', \Sigma, \delta', s', F'):
     S \leftarrow \{\{s\}\}
                                                                                      (active states)
     K' \leftarrow \emptyset
                                                                                       (done states)
                                                                       (start with no transitions)
     while S \neq \emptyset do
           Choose A \in S
                                                                                 (any state will do)
           S \leftarrow S \setminus \{A\}
           K' \leftarrow K' \cup \{A\}
                                                                        (state A processed now)
           foreach a \in \Sigma do
                                               (each action will lead to a new state NewA)
                 NewA \leftarrow \emptyset
                 foreach (p, a, q) \in \Delta \land p \in A do
                       NewA \leftarrow NewA + q (for every p in A and p \stackrel{a}{\rightarrow} q we add q)
                 if NewA \neq \emptyset then (if NewA is empty then there is no transition)
                       Add to \delta' transition A \stackrel{a}{\rightarrow} NewA
                      if NewA \notin S \cup K' then if NewA is processed we are done
                        S \leftarrow S \cup \{NewA\} (otherwise we add it to the queue)
     s' \leftarrow \{s\}F' \leftarrow \{p \in K' : K' \cap F \neq \emptyset\}
                                                             (a single accepting state will do)
```

ε -TRANSITIONS

- Useful at times to have "spontaneous" transitions = transitions that change the state without any input being read = ε -transitions
 - Only available for nondeterministic state transition diagrams!
- Example of usefulness: Construct the state transition diagram for the language

$$\{0,1\}^*01\{0,1\}^* + \{w \in \{0,1\}^* : w \text{ has an even number of 1's}\}$$

• Even better ε -transitions can be eliminated afterward

ELIMINATING ε -TRANSITIONS

For every diagram M with ε -transitions a new diagram without ε -transitions can be constructed as follows:

- **1** Make a copy M' of M where the ε -transitions have been removed. Remove states that have only ε -transitions coming in except for the starting state
- ② Add transitions to M' as follows: whenever M has a chain of ε -transitions followed by a "real" transition on x:

$$\widehat{q} \xrightarrow{\varepsilon} \bigcirc \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} \bigcirc \xrightarrow{x} \widehat{p}$$

add to M' a transition from state q to state p labeled by x:

$$(q) \xrightarrow{x} (p)$$

- Note that q and p may be any states
- In particular this step is also used in the case where q = p
- **1** If M has a chain of ε -transitions from a state r to an accepting state, then r is made to be an accepting state of M'.

EXAMPLES FROM LEXICAL ANALYSIS

- Lexical analysis splits the input of a compiler (program) into lexical units (tokens)
- First step of compilation, easy to implement using state transition diagrams

When returning from *-ed states must "put back" the last character read

