State Transition Diagrams

Stefan D. Bruda

CS 310, Winter 2025

STATE TRANSITION DIAGRAMS

@ Finite directed graph

@ Edges (transitions) labeled with symbols from an alphabet

@ Nodes (states) labeled only for convenience ,

@ One initial state.: OD\/ 0
@ Several accepting states / 1

@ Astring cicoCs ... Cp is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the
sequence of labels along the path is ¢y, ¢, ..., ¢,

C4 C2 C3 Cn @
@ Same state might be visited more than once
o Intermediate states might be accepting (but it does not matter)
@ The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 1/ 11

DETERMINISTIC FINITE AUTOMATA

@ A state diagram describes graphically a deterministic finite automaton
(DFA), a machine that at any given time is in one of finitely many states,
and whose state changes according to a predetermined way in response
to a sequence of input symbols

@ Formal definition: a deterministic finite automaton is a tuple
M= (K,%,s,F)
e K = finite set of states
e ¥ = input alphabet
e F C K = set of accepting states
@ s € K = initial state
@ §: K x ¥ — K = transition function

K={a1,0,q,q} q,0)=q1 d(qi,1)=0q
r={0,1} 6(g,0)=q3 0(q2,1) = qa
F={as,qa} 0(g3,0) =qs (g3, 1) = g
s=q 6(qs,0) =qa 0(qa,1) = g3

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 2/ 11

SOFTWARE REALIZATION

@ Big practical advantages of DFA: very easy to implement:
o Interface to define a vocabulary and a function to obtain the input tokens
typename vocab; /* alphabet + end-of-string */
const vocab EOS; /* end-of-string pseudo-token */
vocab gettoken(void); /* returns next token */
e Variable (state) changed by a simple switch statement as we go along
int main (void) {
typedef enum {SO, S1, ... } state;
state s = S0; vocab t = gettoken();
while (t != EOS) {
switch (s) {
case SO0: if (t == ..
if (¢ == ...

.; break;
.; break;

N
n n
|

case S1:

} /% switch %/
t = gettoken(); } /* while */
/* accept iff the current state s is final */

}

State Transition Diagrams (S. D. Bruda)

CS 310, Winter 2025 3/ 11

SOFTWARE REALIZATION: EXAMPLE

typedef enum {ZERO, ONE, EOS} vocab;

vocab gettoken(void) {
int ¢ = getc(stdin);

if (c == ’0’) return ZERO;
if (c == ’1’) return ONE;
if (¢ == ’\n’) return EOS;
perror("illegal character"); }

int main (void) {
typedef enum {SO, S1 } state;
state s = S0; vocab t = gettoken();
while (t !'= EOS) {
switch (s) {

case S0: if (t == ONE) s = S1; break;
/* if (t == ZER0O) s = SO0; break */
case S1: if (t == ONE) s = SO; break;
/* if (t == ZERD) s = S1; break */ } /* switch */

t = gettoken(); } /* while */
if (s != S0) printf("String not accepted.\n"); }

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 4/ 11

NONDETERMINISM

@ So far the state diagrams are deterministic = for any pair (state, input
symbol) there can be at most one outgoing transition

@ A nondeterministic diagram allows for the following situation: ()
@ The acceptance condition remains unchanged:

;

@)

@ Why nondeterminism?
o Simplifies the construction of the diagram

)y m a n
HH, @)—~@2)
@ A nondeterministic diagram can be much smaller than the smallest possible
deterministic state diagram that recognizes the same language

@ Also known as nondeterministic finite automata (NFA)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 5/ 11

NONDETERMINISM

@ So far the state diagrams are deterministic = for any pair (state, input
symbol) there can be at most one outgoing transition

@ A nondeterministic diagram allows for the following situation: ()

@ The acceptance condition remains unchanged:

@ Astring cicocs . . . Cn is accepted by a state transition diagram if there exists
some path from the starting state to an accepting state such that the
sequence of labels along the pathis ¢1, ¢, ..., €y

@ Why nondeterminism?
e Simplifies the construction of the diagram

)y m a n
W @)—@)
@ A nondeterministic diagram can be much smaller than the smallest possible

deterministic state diagram that recognizes the same language
@ Also known as nondeterministic finite automata (NFA)

i

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 5/ 11

SOFTWARE REALIZATION

@ As above, except that we have to keep track of a set of states at any

given time

typedef enum { QO, Q1, Q2, Q3 } state;

int main (void) {

vocab t = gettoken(); StateSet A; A.include(QO);

while (t !'= E0S) {
StateSet Newl;

for (state s in A) {
switch (s) {

case

case
case
case

}

}
A = NewA;
}

QO:
Q1:

Q2:
Q3:

t =

NewA.include (QO) ;

if (¢t == ’m’) NewA.include(Q1l); break;
if (t == ’a’) NewA.include(Q2); break;
if (¢t == ’n’) NewA.include(Q3); break;
break;

gettoken() ;

/* accept iff (Q3 in A) */

}

State Transition Diagrams (S. D. Bruda)

CS 310, Winter 2025 6/ 11

SOFTWARE REALIZATION (CONT’D)

@ This kind of implementation is fine for “throw-away” automata
o Text editor search function searches for a pattern in the text
e The next search is likely to be different so a brand new automaton needs to
be created
@ Some times the automaton is created once and then used multiple times
o The lexical structure of a programming language is well established
o Lexical analysis in a compiler is accomplished by an automaton that never

changes
e In such a case it is more efficient to precalculate the set of states

@ Exactly as in the previous program
@ Except that we no longer have an input to guide us, so we calculate the sets

NewA for all possible inputs
@ We obtain a DFA that is equivalent to the given NFA (i.e., recognizes the same

language)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 7/ 11

PRECALCULATING STATE SETS

@ Precalculating all the sets of states effectively constructs a deterministic
state transition diagram that is equivalent to the original
(nondeterministic) state transition diagram:

algorithm DETERMINIZE(M = (K, X, A, s, F)) returns M’ = (K',x,6',s', F'):

S «— {{s}} (active states)
K '+ 0 (done states)
&0 (start with no transitions)
while S # () do
Choose A€ S (any state will do)
S+ S\ {A}
K' + K" U{A} (state A processed now)
foreach a € X do (each action will lead to a new state NewA)
NewA «+

foreach (p,a,q) € AApe Ado
NewA < NewA + q (for every pin Aand p -3 q we add q)
if NewA # (@ then (if NewA is empty then there is no transition)

Add to &' transition A % NewA
if NewA ¢ SU K’ then if NewA is processed we are done
| S+« SU{NewA} (otherwise we add it to the queue)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 8/ 11

PRECALCULATING STATE SETS

@ Precalculating all the sets of states effectively constructs a deterministic
state transition diagram that is equivalent to the original
(nondeterministic) state transition diagram:

algorithm DETERMINIZE(M = (K, X, A, s, F)) returns M’ = (K',x,6',s', F'):

S «— {{s}} (active states)
K '+ 0 (done states)
&0 (start with no transitions)
while S # () do
Choose A€ S (any state will do)
S+ S\ {A}
K' + K" U{A} (state A processed now)
foreach a € X do (each action will lead to a new state NewA)
NewA «+

foreach (p,a,q) € AApe Ado
NewA < NewA + q (for every pin Aand p -3 q we add q)
if NewA # (@ then (if NewA is empty then there is no transition)

Add to &' transition A % NewA
if NewA ¢ SU K’ then if NewA is processed we are done
| S+« SU{NewA} (otherwise we add it to the queue)

s« {s}

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 8/ 11

PRECALCULATING STATE SETS

@ Precalculating all the sets of states effectively constructs a deterministic
state transition diagram that is equivalent to the original
(nondeterministic) state transition diagram:

algorithm DETERMINIZE(M = (K, X, A, s, F)) returns M’ = (K',x,6',s', F'):

S «— {{s}} (active states)
K '+ 0 (done states)
&0 (start with no transitions)
while S # () do
Choose A€ S (any state will do)
S+ S\ {A}
K' + K" U{A} (state A processed now)
foreach a € X do (each action will lead to a new state NewA)
NewA «+

foreach (p,a,q) € AApe Ado
NewA < NewA + q (for every pin Aand p -3 q we add q)
if NewA # (@ then (if NewA is empty then there is no transition)

Add to &' transition A % NewA
if NewA ¢ SU K’ then if NewA is processed we are done
| S+« SU{NewA} (otherwise we add it to the queue)

s’_<— {s}
| FF<{peK :K'nF#0} (a single accepting state will do)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 8/ 11

e-TRANSITIONS

@ Useful at times to have “spontaneous” transitions = transitions that
change the state without any input being read = e-transitions
@ Only available for nondeterministic state transition diagrams!

@ Example of usefulness: Construct the state transition diagram for the
language

{0,1}701{0,1}* + {w € {0,1}" : w has an even number of 1’s}

@ Even better e-transitions can be eliminated afterward

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 9/ 11

ELIMINATING £-TRANSITIONS

For every diagram M with e-transitions a new diagram without e-transitions
can be constructed as follows:

@ Make a copy M’ of M where the s-transitions have been removed.
Remove states that have only e-transitions coming in except for the
starting state

@ Add transitions to M’ as follows: whenever M has a chain of e-transitions
followed by a “real” transition on x:

Q-0 5050
add to M’ a transition from state g to state p labeled by x:
@—®

o Note that g and p may be any states
e In particular this step is also used in the case where g = p

@ If M has a chain of e-transitions from a state r to an accepting state, then
r is made to be an accepting state of M'.

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 10/ 11

EXAMPLES FROM LEXICAL ANALYSIS
@ Lexical analysis splits the input of a compiler
(program) into lexical units (tokens)

o First step of compilation, easy to implement using
state transition diagrams

When returning from *-ed states must “put back” the last

character read
State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 11 /11

