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REACTIVE SYSTEMS

@ The method of algorithm verification
discussed earlier needs access to the C1=
code (white box)

@ Formal methods do not assume that
code is available (black box)

e We ignore everything in terms of
internal functionality of the system
o At any given time the system is in one
of the many states from a given set S
@ Alternate definition: Set V of variables,
each state is an interpretation over V
@ A finite / countable set of states given

coffee

us a finite automaton / transition Ci =
system coin —
e We change state by performing one (tea — STOP O
action from a set of actions L bang — coffee — STOP)
@ Only certain actions are enabled in O
each state coin —s
@ Special action: unobservable (1) (coffee — STOP I
o Systems are considered reactive (react bang — tea — STOP)

to the environment)
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COMMUNICATING SEQUENTIAL PROCESSES (CSP)

@ System specification uses a process algebra = identifies the states and
actions

o Compositional specification (start from simple “processes” and combine
them to obtain increasingly complex ones)
e Descriptions compilable into state transition diagrams / transition systems

@ Such a process algebra is CSP:

o Simplest process: STOP =- does not perform anything
@ Perform an action: R = a — P = R can perform a and then becomes P

PRINTER = accept — print —+ STOP

e Choice: R = P [0 Q = R becomes either P or Q depending on what action
is offered by the environment

PRINTER = (accept — print — STOP) O (shutdown — STOP)
@ Recursion: some action gets us back into a process (or state) already named

PRINTER = (accept — print — PRINTER) O (shutdown — STOP)
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MoORE CSP

@ Internal choice: R = P11 Q = R first becomes either P or Q
“spontaneously” before any interaction with the environment:

PIO
o—0—0
P p- - Q
PRINTER = (accept — print — STOP) 1 (shutdown — STOP)

@ Parallel composition: R = P || Q = P and Q execute common actions
synchronized and individual actions separately

P || Q, where: P =up — down — P [ off -~ STOP
Q =up — left —» Q O off — STOP

down PllQ off
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CSP EXAMPLE: KIDS PAINTING

ISABELLA = isabella.get.box — isabella.get.easel — isabella.paint —
isabella.drop.box — isabella.drop.easel — ISABELLA

O isabella.get.easel — isabella.get.box — isabella.paint —
isabella.drop.box — isabella.drop.easel — ISABELLA

KATE = kate.get.box — kate.get.easel — kate.paint —
kate.drop.box — kate.drop.easel — KATE
O kate.get.easel — kate.get.box — kate.paint —
kate.drop.box — kate.drop.easel — KATE
EASEL = isabella.get.easel — isabella.drop.easel — EASEL

O kate.get.easel — kate.drop.easel — EASEL
BOX = isabella.get.box — isabella.drop.box — BOX
O kate.get.box — kate.drop.box — BOX

PAINTING = ISABELLA || KATE || EASEL || BOX
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CSP EXAMPLE: KIDS PAINTING (CONT'D)

O
K =

O
E =
B —

i.g.b=ig.e @ ip=idb=ide—|
ige=igb=ip=idb=ide—I
k.g.b k.g.e = kp = k.d.b = kde — K
k.g.e kg.b= kp =kdb = kde—K
i.g.e ide—E O kge kde—E
i.gb=idb—B O kgb=kdb-—B

PAINTING =1 ||K || E|| B
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I = i.g.bi.g.e@i.pi.d.bi.d.e — 1
O ige=igb=ip=idb=ide—I

K = k.g.bk.g.ek.pk.d.bk.d.e - K

O kge kg.b= kp =kdb = kde—K
E = i.g.e ide—E O kge kde—E
B = i.g.b idb—B O kgb k.d.b— B

PAINTING =1 ||K || E|| B

@ The process 11 || K5 || B1 || E2 is an example of deadlock
@ Two (or more) processes are deadlocked whenever they are able perform
actions individually in isolation from each other, but no action is possible
when they are combined together in a parallel composition

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 5/9



CSP EXAMPLE: DINING PHILOSOPHERS

@ Five philosophers sit at a round table with a bow! of rice in the middle and
five chopsticks (one in between each philosopher)

@ In order to eat a philosopher must acquire both the adjacent chopsticks
first

PHIL; = enter.i—
((pick.i.i — pick.i.((i+ 1) mod 5) — eat.i
— put.i.i — put.i.((i+ 1) mod 5) — leave.i — PHIL,;)
g
(pick.i.((i + 1) mod 5) — pick.i.i — eat.i
— put.i.((i + 1) mod 5) — put.i.i — leave.i — PHIL;))
PHILS = PHIL, || PHIL; || PHILy || PHILg || PHIL,
CHOP; = pick.,.j— put,j.j — CHOP;
O pick.((j — 1) mod 5).j — put.((j — 1) mod 5).j — CHOP;
CHOPS = CHOPy || CHOP; || CHOP; || CHOP;3 || CHOP,4
COLLEGE = PHILS || CHOPS
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VERIFICATION WITH TRACES

@ Black box testing = we do not necessarily have access even to the CSP
description

o Typical scenario: CSP is used to define a specification (intended minimal
system behaviour), but the system under test is a true back box
@ Comparison between processes must be based on observable features

@ Simplest observation: trace the execution of the process = record the
actions of the process as they happen

e traces(accept — print — STOP) = {¢, (accept), (accept, print) }
o PRINT = accept — print — PRINT
= traces(PRINT) = (accept, print)*(c + (accept))

@ Defines an implementation relation and associated equivalence relation:

IC+ S iff traces(S) C traces(/)
I=r S iff SCr/&&ICT S iff traces(S) = traces(/)

@ Simple verification with traces: Let C = traces(S) N traces(/)

e /| C7 Swhenever C = (); otherwise C contains counterexamples
o Cis cheap to compute whenever [ and S are finite automata
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TRACES OF COFFEE MACHINES

C, = Cr =

coffee coffee

@ Are C; and C; equivalent?
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TRACES OF COFFEE MACHINES

C, = Cr =

coffee coffee

@ Are C; and C; equivalent?
@ One may argue either way
@ Trace-wise we actually have C; =1 Co

traces(Cq) =traces(Cy) = { &, (coin), (coin,tea), (coin, coffee),
(coin, bang), (coin, bang, tea),
(coin, bang, coffee) }
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IS TRACE PREORDER FINE ENOUGH?

X = a—b—-STOP O b— a— STOP
Y = a—b—-STOP n b— a— STOP
P a—b— STOP

@ In terms of traces the processes X||P and Y|P are the same:
traces(X||P) = traces(Y||P) = {¢, a, ab}

@ This trace equivalence however hides a difference in behaviour: X||P is
always able to perform an a followed by a b, whereas Y||P can deadlock
before any action is performed (depending on the choice Y makes before
synchronizing with P)

e Traces are not enough to identify deadlocks

@ Trace equivalence is simple, but in some cases it may not be fine enough

(depending on the application domain)
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