
Introduction to formal methods

Stefan D. Bruda

CS 310, Winter 2025

REACTIVE SYSTEMS

The method of algorithm verification
discussed earlier needs access to the
code (white box)
Formal methods do not assume that
code is available (black box)

We ignore everything in terms of
internal functionality of the system
At any given time the system is in one
of the many states from a given set S

Alternate definition: Set V of variables,
each state is an interpretation over V
A finite / countable set of states given
us a finite automaton / transition
system

We change state by performing one
action from a set of actions L

Only certain actions are enabled in
each state
Special action: unobservable (τ)

Systems are considered reactive (react
to the environment)

C1 =

coffee tea

bang bang

tea coffee

coin coin

C1 =
coin →

(tea → STOP □
bang → coffee → STOP)

□
coin →

(coffee → STOP □
bang → tea → STOP)

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 1 / 9

COMMUNICATING SEQUENTIAL PROCESSES (CSP)

System specification uses a process algebra = identifies the states and
actions

Compositional specification (start from simple “processes” and combine
them to obtain increasingly complex ones)
Descriptions compilable into state transition diagrams / transition systems

Such a process algebra is CSP:
Simplest process: STOP ⇒ does not perform anything
Perform an action: R = a → P ⇒ R can perform a and then becomes P

PRINTER = accept → print → STOP

Choice: R = P □ Q ⇒ R becomes either P or Q depending on what action
is offered by the environment

PRINTER = (accept → print → STOP) □ (shutdown → STOP)

Recursion: some action gets us back into a process (or state) already named

PRINTER = (accept → print → PRINTER) □ (shutdown → STOP)

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 2 / 9

MORE CSP
Internal choice: R = P ⊓ Q ⇒ R first becomes either P or Q
“spontaneously” before any interaction with the environment:

P ⊓Q
QP ττ

PRINTER = (accept → print → STOP) ⊓ (shutdown → STOP)

Parallel composition: R = P || Q ⇒ P and Q execute common actions
synchronized and individual actions separately

P || Q, where: P = up → down → P □ off → STOP
Q = up → left → Q □ off → STOP

P′
P

P′′
down

up

off

Q′
Q

Q′′
left

up

off

P || Q

P′ || Q′

P || Q′ P′ || Q

P′′ || Q′′

up

off

down

left

left

down

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 3 / 9

CSP EXAMPLE: KIDS PAINTING

ISABELLA = isabella.get.box → isabella.get.easel → isabella.paint →
isabella.drop.box → isabella.drop.easel → ISABELLA

□ isabella.get.easel → isabella.get.box → isabella.paint →
isabella.drop.box → isabella.drop.easel → ISABELLA

KATE = kate.get.box → kate.get.easel → kate.paint →
kate.drop.box → kate.drop.easel → KATE

□ kate.get.easel → kate.get.box → kate.paint →
kate.drop.box → kate.drop.easel → KATE

EASEL = isabella.get.easel → isabella.drop.easel → EASEL
□ kate.get.easel → kate.drop.easel → EASEL

BOX = isabella.get.box → isabella.drop.box → BOX
□ kate.get.box → kate.drop.box → BOX

PAINTING = ISABELLA || KATE || EASEL || BOX

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 4 / 9

CSP EXAMPLE: KIDS PAINTING (CONT’D)

I = i.g.b
I1

→ i.g.e
I2

→ i.p
I3

→ i.d.b
I4

→ i.d.e → I

□ i.g.e
I5

→ i.g.b
I6

→ i.p
I7

→ i.d.b
I8

→ i.d.e → I

K = k.g.b
K1

→ k.g.e
K2

→ k.p
K3

→ k.d.b
K4

→ k.d.e → K

□ k.g.e
K5

→ k.g.b
K6

→ k.p
K7

→ k.d.b
K8

→ k.d.e → K

E = i.g.e
E1

→ i.d.e → E □ k.g.e
E2

→ k.d.e → E

B = i.g.b
B1

→ i.d.b → B □ k.g.b
B2

→ k.d.b → B

PAINTING = I || K || E || B

The process I1 || K5 || B1 || E2 is an example of deadlock
Two (or more) processes are deadlocked whenever they are able perform
actions individually in isolation from each other, but no action is possible
when they are combined together in a parallel composition

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 5 / 9

CSP EXAMPLE: KIDS PAINTING (CONT’D)

I = i.g.b
I1

→ i.g.e
I2

→ i.p
I3

→ i.d.b
I4

→ i.d.e → I

□ i.g.e
I5

→ i.g.b
I6

→ i.p
I7

→ i.d.b
I8

→ i.d.e → I

K = k.g.b
K1

→ k.g.e
K2

→ k.p
K3

→ k.d.b
K4

→ k.d.e → K

□ k.g.e
K5

→ k.g.b
K6

→ k.p
K7

→ k.d.b
K8

→ k.d.e → K

E = i.g.e
E1

→ i.d.e → E □ k.g.e
E2

→ k.d.e → E

B = i.g.b
B1

→ i.d.b → B □ k.g.b
B2

→ k.d.b → B

PAINTING = I || K || E || B

The process I1 || K5 || B1 || E2 is an example of deadlock
Two (or more) processes are deadlocked whenever they are able perform
actions individually in isolation from each other, but no action is possible
when they are combined together in a parallel composition

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 5 / 9

CSP EXAMPLE: DINING PHILOSOPHERS

Five philosophers sit at a round table with a bowl of rice in the middle and
five chopsticks (one in between each philosopher)
In order to eat a philosopher must acquire both the adjacent chopsticks
first

PHILi = enter.i →
((pick.i .i → pick.i .((i + 1) mod 5) → eat.i

→ put.i .i → put.i .((i + 1) mod 5) → leave.i → PHILi)

□

(pick.i .((i + 1) mod 5) → pick.i .i → eat.i
→ put.i .((i + 1) mod 5) → put.i .i → leave.i → PHILi))

PHILS = PHIL0 || PHIL1 || PHIL2 || PHIL3 || PHIL4

CHOPj = pick.j .j → put.j .j → CHOPj

□ pick.((j − 1) mod 5).j → put.((j − 1) mod 5).j → CHOPj

CHOPS = CHOP0 || CHOP1 || CHOP2 || CHOP3 || CHOP4

COLLEGE = PHILS || CHOPS

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 6 / 9

VERIFICATION WITH TRACES

Black box testing = we do not necessarily have access even to the CSP
description

Typical scenario: CSP is used to define a specification (intended minimal
system behaviour), but the system under test is a true back box

Comparison between processes must be based on observable features
Simplest observation: trace the execution of the process = record the
actions of the process as they happen

traces(accept → print → STOP) = {ε, ⟨accept⟩, ⟨accept, print⟩}
PRINT = accept → print → PRINT

⇒ traces(PRINT) = ⟨accept, print⟩∗(ε+ ⟨accept⟩)
Defines an implementation relation and associated equivalence relation:

I ⊑T S iff traces(S) ⊆ traces(I)
I ≡T S iff S ⊑T I && I ⊑T S iff traces(S) = traces(I)

Simple verification with traces: Let C = traces(S) ∩ traces(I)
I ⊑T S whenever C = ∅; otherwise C contains counterexamples
C is cheap to compute whenever I and S are finite automata

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 7 / 9

TRACES OF COFFEE MACHINES

C1 =

coffee tea

bang bang

tea coffee

coin coin
C2 =

coffee tea

bang bang

coffee tea

coin coin

Are C1 and C2 equivalent?

One may argue either way
Trace-wise we actually have C1 ≡T C2

traces(C1) = traces(C2) = { ε, ⟨coin⟩, ⟨coin, tea⟩, ⟨coin, coffee⟩,
⟨coin, bang⟩, ⟨coin, bang, tea⟩,
⟨coin, bang, coffee⟩ }

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 8 / 9

TRACES OF COFFEE MACHINES

C1 =

coffee tea

bang bang

tea coffee

coin coin
C2 =

coffee tea

bang bang

coffee tea

coin coin

Are C1 and C2 equivalent?
One may argue either way
Trace-wise we actually have C1 ≡T C2

traces(C1) = traces(C2) = { ε, ⟨coin⟩, ⟨coin, tea⟩, ⟨coin, coffee⟩,
⟨coin, bang⟩, ⟨coin, bang, tea⟩,
⟨coin, bang, coffee⟩ }

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 8 / 9

IS TRACE PREORDER FINE ENOUGH?

X = a → b → STOP □ b → a → STOP
Y = a → b → STOP ⊓ b → a → STOP
P = a → b → STOP

In terms of traces the processes X∥P and Y∥P are the same:
traces(X∥P) = traces(Y∥P) = {ε, a,ab}
This trace equivalence however hides a difference in behaviour: X∥P is
always able to perform an a followed by a b, whereas Y∥P can deadlock
before any action is performed (depending on the choice Y makes before
synchronizing with P)

Traces are not enough to identify deadlocks

Trace equivalence is simple, but in some cases it may not be fine enough
(depending on the application domain)

Introduction to formal methods (S. D. Bruda) CS 310, Winter 2025 9 / 9

