## CS 310, Assignment 1

## Answers

1. Let $\Sigma=\{a, b\}$ and consider languages $A=\{b, a a, b a\}$ and $B=\{\varepsilon, a, b b\}$.
(a) Write down all strings in $\Sigma^{*}$ that have length at most two.
```
ANSWER:
\varepsilon, a,b,aa,ab,ba,bb
```

(b) How many strings are in $A \cdot B$ ? Write down all of them.

ANSWER:
$A \cdot B=\{b, b a, b b b, a a, a a a, a a b b, b a a, b a b b\}$. The language consists of 8 strings rather than 9 since $b a$ has two different decompositions as a concatenation of strings from $A$ and $B$; however a language is a set, and duplicates are ignored in a set.
(c) How many strings are in $B \cdot A$ ? Write down all of them.

ANSWER:
$B \cdot A=\{b, a a, b a, a b, a a a, a b a, b b b, b b a a, b b b a\}$. The language consists of 9 (distinct) strings this time.
2. Let $R=\left(b a^{*} b+a b a^{*} b a\right)^{*}$ and $S=\left(a^{*} b a^{*} b a^{*}\right)^{*}$, both over $\Sigma=\{a, b\}$.
(a) Give an example of a string $z$ that is both in $R$ and in $S$ (that is, $z \in R \cap S$ ).

## ANSWER:

Many such strings exist including $\varepsilon, b b, a b a b a$, etc.
(b) Is it possible to find a string $x$ that is in $R$ and is not in $S$ (that is, $x \in R \cap \bar{S}$ )? If yes, write it down; if not explain briefly why.

ANSWER:
No. Every string in $R$ is also in $S$, meaning that $R \cap \bar{S}=\emptyset$. Indeed, note first that $S$ contains all the strings with an even number of $b s$ other than the strings in $a^{*}$. In turn, both $b a^{*} b$ and $a b a^{*} b a$ contain exactly two $b$ s and none of them is in $a^{*}$, so any string in the closure of the union of the two will certainly contain an even number of $b s$, will not be in $a^{*}$, and so will be in $S$.
(c) Is it possible to find a string $y$ that is in $S$ and is not in $R$ (that is, $y \in S \cap \bar{R}$ )? If yes, write it down; if not explain briefly why.

ANSWER:
A string from $R$ that contains only two occurrences of $b$ must start and end with the same symbol (either $a$ or $b$ ). Any string containing two $b$ s and starting and ending with different symbols will thus be a possible $y$ (meaning a member of $S \cap \bar{R}$ ). Such strings include baba, abab, abaaab, and so on.
3. Give regular expressions for each of the following languages over $\Sigma=\{0,1\}$.
(a) All strings that begin with 1 and end with 00 .

ANSWER:
$1(0+1)^{*} 00$
(b) All strings that have both 00 and 01 as substrings. Note that the substrings can occur in either order and possibly overlap.

## ANSWER:

The possible variants are: 00 before 01,01 before 00 , and one occurrence of 001 (the two substrings overlapping). The most straightforward answer is therefore the following regular expression: $(0+1)^{*} 00(0+1)^{*} 01(0+1)^{*}+(0+1)^{*} 01(0+1)^{*} 00(0+1)^{*}+(0+$ 1) ${ }^{*} 001(0+1)^{*}$.
4. Describe the language $L$ over $\Sigma=\{0,1\}$ defined by each of the following equations. Justify your answers as fully as you can.
(a) $L=0+1 L$

## ANSWER:

0 is certainly in $L$. The recursive case will add one 1 in front, and we can apply that case as many times as we like. I am therefore guessing that $L=1^{*} 0$.
If we want to be more organized we can apply the approximating from below method from the lectures:

$$
\begin{aligned}
& L_{0}=\emptyset \\
& L_{1}=0 \\
& L_{2}=\{0,10\} \\
& L_{3}=\{0,10,110\} \\
& L_{4}=\{0,10,110,1110\} \\
& L_{5}=\{0,10,110,1110,11110\}
\end{aligned}
$$

At this point I am fairly confident that $L=1^{*} 0$.
Now the above is just a guess. We still need to make sure that $1^{*} 0$ is indeed a solution of the equation. We note that a string in $1^{*} 0$ either has no 1 symbols (case in which it is 0 ) or has at least one 1 (case in which it belongs to the language $11^{*} 0$ ). There is no other alternative and therefore:

$$
1^{*} 0=0+11^{*} 0
$$

This proves that $L=1^{*} 0$.
Are there any more solutions to the equation? It does not appear so. There is no other way to describe $L$ other than the way I did in the first paragraph of this answer. More formally the equation is guarded (we add something at each recursive step), which guarantees the uniqueness of the solution; you are however not expected to know that (even if now you know).
(b) $L=L+1+L$

## ANSWER:

Lucky for us, the approximation scheme converges pretty quickly:

$$
\begin{aligned}
L_{0} & =\emptyset \\
L 1 & =\emptyset+1+\emptyset=1 \\
L_{2} & =1+1+1=1=L_{1} \text { (no change) }
\end{aligned}
$$

and so $L=1$. Since we were able to actually compute the whole set $L$ this way we do not need to verify the solution.

It is also easy to note that $L+1+L=L$ whenever $1 \in L$ (since $1 \in L$ implies $L+1=L$ and thus $L+1+L=L+L=L$ ). Therefore any set that includes 1 is a solution for the equation.
Why did the approximation method give 1 as a solution? This method approximates from below and so will produce the smallest solution. Clearly 1 (the solution given by our method) is the smallest set containing the string 1.

