CS 310, Assignment 3

Answers

1. Using one of the method described in class and/or textbook (Section 9.1) convert the following regular expression into a state transition diagram:

$$
\left(0^{*} 1+1^{*} 0\right)^{*}(1+0)^{*}
$$

Indicate in your answer how did you arrive at the result as follows: Write down all the state transition diagrams that you constructed for all the subexpressions and clearly indicate which diagram corresponds to which expression. Do not simplify any state transition diagram.

Answer:
(a) Automaton for 0:

(b) Automaton for 1:

(c) Automaton for $0^{*}($ from 1a):

(d) Automaton for 1^{*} (from 1b):

(e) Automaton for $0^{*} 1$ (from 1 b and 1 c):

(f) Automaton for $1^{*} 0$ (from 1a and 1d):
(g) Automaton for $0^{*} 1+1^{*} 0$ (from 1 e and 1 f$)$:

(h) Automaton for $\left(0^{*} 1+1^{*} 0\right)^{*}$ (from 1 g):

(i) Automaton for $1+0$ (from 1a and 1b):

(j) Automaton for $(1+0)^{*}($ from 1i):
(k) Automaton for $\left(0^{*} 1+1^{*} 0\right)^{*}(1+0)^{*}($ from 1 g$)$:

Note that I used the technique that merges states. Using ε-transitions instead would have been equally fine, but the resulting automaton would have been considerably larger.
2. Consider the following state transition diagram over $\Sigma=\{0,1\}$:

Using the method described in class and in the textbook (Section 9.2) convert the diagram into an equivalent regular expression. Include all the intermediate steps in your answer.

ANSWER: We have a single accepting state which happens to be identical to the initial state. We can live with that and eliminate all the other stated, ending with a single state and a loop transition as shown in class. Being the sucker for punishment I am going to do it the hard way though (following the algorithms from the textbook) and separate the initial and accepting state by introducing a new accepting state:

It is worth noting that the resulting regular expression is going to be the same whether we introduce this kind of a separate accepting state or not.
We now have two states that need to be eliminated. We start by eliminating q_{3} (just a random choice, we could have eliminated q_{2} instead). We have the following "triangles" with their respective regular expressions, simplified according to the facts that $\emptyset^{*}=\varepsilon$ and $\emptyset L=L \emptyset=\emptyset$:

This in turn results in the following generalized state transition diagram:

We then eliminate the remaining state which is neither initial nor accepting namely, q_{2} :

We end up with the following generalized transition diagram:

The regular expression equivalent to the original transition diagram is therefore:

$$
\left(1+10+10^{*}(0+10)\right)^{*} \varepsilon\left(\emptyset^{*}+\emptyset\left(1+10+10^{*}(0+10)\right)^{*} \varepsilon\right)^{*}
$$

Given that $\emptyset^{*}=\varepsilon, \varepsilon^{*}=\varepsilon, \varepsilon$ is an identity for concatenation, and \emptyset is a zero for concatenation the expression can be easily simplified to the following:

$$
\left(1+10+10^{*}(0+10)\right)^{*}
$$

which in turn can be converted in the following possibly cleaner form:

$$
\left(1+10+10^{*} 0+10^{*} 10\right)^{*}
$$

3. Are the languages L_{1} and L_{2} below over the alphabet $\Sigma=\{a, b, c\}$ regular or non-regular? Justify your answer carefully.
(a) $L_{1}=\left\{a^{2 i} b^{j} c^{i}: i \geq 0, j>2\right\}$

ANSWER: L_{1} is not regular and we will prove it so using the pumping lemma.
Assume therefore that L_{1} is regular. Note that both i and j are arbitrarily large, so there exists a string $w=a^{2 i} b^{j} c^{i} \in L_{1}$ that is longer than the threshold n and so the pumping lemma applies to it. In fact we will take $i=n$ (so that w is much longer than n) that is, $w=a^{2 n} b^{j} c^{n}$ for some $j>2$.
From the pumping lemma we have that $w=x y z$ such that $x y^{2} z \in L_{1}$. We furthermore have $|x y|<n$. It follows that y only contains a symbols that is, $y=a^{m}$ for some $m>0$ (indeed, $|x y|<n$ so $x y$ must come from the first n symbols of w which are all a).
If this is the case, then $x y^{2} z$ has $2 n+m a^{\prime}$ s (we have increased their number since we pumped y) and $n c^{\prime}$ s (we have not touched those). Since $x y^{2} z \in L_{1}$ it follows that the numbers a^{\prime} 's is twice as much as the number of c^{\prime} s that is, $2 n+m=2 n$ which is equivalent to $m=0$. This contradicts the fact that $m>0$ and so our initial assumption (that L_{1} is regular) must be false.
What happens with the b^{\prime} s you ask? We have not touched those simply because we were able to come up with a string w long enough so that the b 's do not enter the picture. This is fortunate, since the b 's could have been pumped liberally and so would have spoiled our day.
(b) $L_{2}=\left\{a^{i} b^{2 j+1}: i, j \geq 0\right\} \cap\left\{a^{2 k+1} b^{2 n} c^{2 p}: k, n, p \geq 0\right\}$

ANSWER: We can show that L_{2} is regular by noting that $L_{2}=\left(L_{21} L_{22}\right) \cap\left(L_{23} L_{24} L_{25}\right)$, where $L_{21}=\left\{a^{i}: i \geq 0\right\}=a^{*}, L_{22}=\left\{b^{2 j+1}: j \geq 0\right\}=b(b b)^{*}, L_{23}=\left\{a^{2 k+1}: k \geq 0\right\}=$ $a(a a)^{*}, L_{24}=\left\{b^{2 n}: n \geq 0\right\}=(b b)^{*}$, and $L_{25}=\left\{c^{2 p}: p \geq 0\right\}=(c c)^{*}$.
All the languages $L_{2 j}$ are regular, $1 \leq j \leq 5$; indeed, I just gave above the respective regular expressions. Thus L_{2} is a combination of concatenating and intersecting regular languages (see above), and regular languages are closed under both concatenation and intersection. It follows that L_{2} is regular.
A more direct (but less general) way to show the same thing is to note that L_{2} cannot contain any c (since c 's do not appear in the first term of the intersection) and so a string in L_{2} has the form $a^{x} b^{y}$ for some $x, y \geq 0$. Furthermore x must be odd (because of the second term in the intersection). More interestingly, y must also be odd (this time because of the first term) but at the same time it must be even (because of the second term). That is, y does not have any valid value and so $L_{2}=\emptyset$, which is clearly regular.

Note in passing that this is not the language I meant to give you; the $b^{2 n}$ term was meant to be b^{n} and so the language should have been $a(a a)^{*} b(b b)^{*}$. This is obviously immaterial for this assignment but is worth noting since I will do my best for the future questions not to include trivial languages like this.

