
CS 310, Assignment 3

Answers

1. Using one of the method described in class and/or textbook (Section 9.1) convert the follow-
ing regular expression into a state transition diagram:

(0∗1 + 1∗0)∗(1 + 0)∗

Indicate in your answer how did you arrive at the result as follows: Write down all the
state transition diagrams that you constructed for all the subexpressions and clearly indi-
cate which diagram corresponds to which expression. Do not simplify any state transition
diagram.

ANSWER:

(a) Automaton for 0: 0

(b) Automaton for 1: 1

(c) Automaton for 0∗ (from 1a): ε ε

0

(d) Automaton for 1∗ (from 1b): ε ε

1
(e) Automaton for 0∗1 (from 1b and 1c): ε ε

0

1

(f) Automaton for 1∗0 (from 1a and 1d): ε ε

1

0

(g) Automaton for 0∗1 + 1∗0 (from 1e and 1f):

ε
ε

0

1

ε
ε

1

0

1

(h) Automaton for (0∗1 + 1∗0)∗ (from 1g):

ε

ε

0

1

ε

ε

1

0

ε ε

(i) Automaton for 1 + 0 (from 1a and 1b):
1, 0

(j) Automaton for (1 + 0)∗ (from 1i): ε ε

1, 0
(k) Automaton for (0∗1 + 1∗0)∗(1 + 0)∗ (from 1g):

ε

ε

0

1

ε

ε

1

0

ε ε ε ε

1, 0

Note that I used the technique that merges states. Using ε-transitions instead would have
been equally fine, but the resulting automaton would have been considerably larger.

2

2. Consider the following state transition diagram over Σ = {0, 1}:

q1 q2

q3

01

0

1

1

0
1

Using the method described in class and in the textbook (Section 9.2) convert the diagram
into an equivalent regular expression. Include all the intermediate steps in your answer.

ANSWER: We have a single accepting state which happens to be identical to the initial state.
We can live with that and eliminate all the other stated, ending with a single state and a
loop transition as shown in class. Being the sucker for punishment I am going to do it the
hard way though (following the algorithms from the textbook) and separate the initial and
accepting state by introducing a new accepting state:

q4

q1 q2

q3

01

0

1

1

0
1ε

It is worth noting that the resulting regular expression is going to be the same whether we
introduce this kind of a separate accepting state or not.

We now have two states that need to be eliminated. We start by eliminating q3 (just a random
choice, we could have eliminated q2 instead). We have the following “triangles” with their
respective regular expressions, simplified according to the facts that ∅∗ = ε and ∅L = L∅ = ∅:

3

q1 q1

q3

1

1 0

∅

q1 q2

q3

1

1 ∅

∅

q2 q1

q3

0

1 0

∅

q2 q2

q3

0

1 ∅

∅
↓ ↓ ↓ ↓

1 + 10 1 0 + 10 0

q4 q4

q3

∅

∅ ∅

∅

q4 q1

q3

∅

∅ ∅

∅

q4 q2

q3

∅

∅ ∅

∅

q2 q4

q3

∅

∅ ∅

∅

q1 q4

q3

ε

∅ ∅

∅
↓ ↓ ↓ ↓ ↓
∅ ∅ ∅ ∅ ε

This in turn results in the following generalized state transition diagram:

q1 q2

q4

1 + 10 0

1

0 + 10

ε

We then eliminate the remaining state which is neither initial nor accepting namely, q2:

q1 q1

q2

1 + 10

1
0 + 10

0

q1 q4

q2

ε

1 ∅

0

q4 q1

q2

∅

∅ 0 + 10

0

q4 q4

q2

∅

∅ ∅

0
↓ ↓ ↓ ↓

1 + 10 + 10∗(0 + 10) ε ∅ ∅

4

We end up with the following generalized transition diagram:

q1 q4

1 + 10 + 10∗(0 + 10) ∅

ε

∅

The regular expression equivalent to the original transition diagram is therefore:

(1 + 10 + 10∗(0 + 10))∗ε(∅∗ + ∅(1 + 10 + 10∗(0 + 10))∗ε)∗

Given that ∅∗ = ε, ε∗ = ε, ε is an identity for concatenation, and ∅ is a zero for concatenation
the expression can be easily simplified to the following:

(1 + 10 + 10∗(0 + 10))∗

which in turn can be converted in the following possibly cleaner form:

(1 + 10 + 10∗0 + 10∗10)∗

3. Are the languages L1 and L2 below over the alphabet Σ = {a, b, c} regular or non-regular?
Justify your answer carefully.

(a) L1 = {a2ib jci : i ≥ 0, j > 2}

ANSWER: L1 is not regular and we will prove it so using the pumping lemma.

Assume therefore that L1 is regular. Note that both i and j are arbitrarily large, so there
exists a string w = a2ib jci ∈ L1 that is longer than the threshold n and so the pumping
lemma applies to it. In fact we will take i = n (so that w is much longer than n) that is,
w = a2nb jcn for some j > 2.

From the pumping lemma we have that w = xyz such that xy2z ∈ L1. We furthermore
have |xy| < n. It follows that y only contains a symbols that is, y = am for some m > 0
(indeed, |xy| < n so xy must come from the first n symbols of w which are all a).

If this is the case, then xy2z has 2n + m a’s (we have increased their number since we
pumped y) and n c’s (we have not touched those). Since xy2z ∈ L1 it follows that
the numbers a’s is twice as much as the number of c’s that is, 2n + m = 2n which is
equivalent to m = 0. This contradicts the fact that m > 0 and so our initial assumption
(that L1 is regular) must be false. �

What happens with the b’s you ask? We have not touched those simply because we
were able to come up with a string w long enough so that the b’s do not enter the
picture. This is fortunate, since the b’s could have been pumped liberally and so would
have spoiled our day.

5

(b) L2 = {aib2 j+1 : i, j ≥ 0} ∩ {a2k+1b2nc2p : k, n, p ≥ 0}

ANSWER: We can show that L2 is regular by noting that L2 = (L21L22) ∩ (L23L24L25),
where L21 = {ai : i ≥ 0} = a∗, L22 = {b2 j+1 : j ≥ 0} = b(bb)∗, L23 = {a2k+1 : k ≥ 0} =
a(aa)∗ , L24 = {b2n : n ≥ 0} = (bb)∗, and L25 = {c2p : p ≥ 0} = (cc)∗.

All the languages L2 j are regular, 1 ≤ j ≤ 5; indeed, I just gave above the respective
regular expressions. Thus L2 is a combination of concatenating and intersecting regular
languages (see above), and regular languages are closed under both concatenation and
intersection. It follows that L2 is regular. �

A more direct (but less general) way to show the same thing is to note that L2 cannot
contain any c (since c’s do not appear in the first term of the intersection) and so a
string in L2 has the form axby for some x, y ≥ 0. Furthermore x must be odd (because
of the second term in the intersection). More interestingly, y must also be odd (this time
because of the first term) but at the same time it must be even (because of the second
term). That is, y does not have any valid value and so L2 = ∅, which is clearly regular.
�

Note in passing that this is not the language I meant to give you; the b2n term was
meant to be bn and so the language should have been a(aa)∗b(bb)∗. This is obviously
immaterial for this assignment but is worth noting since I will do my best for the future
questions not to include trivial languages like this.

6

