CS 310, Assignment 5

Answers

1. Consider the following context-free grammar with start symbol S, nonterminals $\{S, A, B, C\}$, and terminals $\{0,1\}$:

$$
S \rightarrow A 0 \quad A \rightarrow B \quad A \rightarrow C 1 \quad B \rightarrow 1 \quad B \rightarrow \varepsilon \quad C \rightarrow 0
$$

(a) Compute all the sets First and Follow necessary to implement a recursive decent parser for this grammar. However, do not list any unnecessary such a set.

Answer: We do not need to compute any sets for S (there is a single rule for that symbol).
A has two rules and it is also the case that $A \Rightarrow^{*} \varepsilon$ so we need:

$$
\operatorname{First}(B)=\{1, E O S\} \quad \operatorname{First}(C 1)=\{0\} \quad \operatorname{Follow}(A)=\{0\}
$$

B also has two rules, one of them an ε-rule, so we need:

$$
\operatorname{First}(1)=\{1\} \quad \operatorname{Follow}(B)=\{0\}
$$

We do not need to compute any sets for C either (for again, there is a single rule for that nonterminal).
(b) Investigate all the combinations of sets First and Follow that are involved in the implementation of a recursive descent parser for this grammar. Explain how these combination make the grammar suitable or unsuitable (as the case might be) for recursive descent parsing.

Answer: The grammar is not suitable for recursive descent parsing since $\operatorname{First}(C 1) \cap$ Follow $(A)=\{0\} \neq \emptyset$. In other words, when the next token is 0 we have no idea which rule to use to rewrite A.
As far as B is concerned we are fine. When we see a 0 we know we should rewrite B using the first rule, and a 1 directs us to the second rule. Unfortunately the parser is for the whole grammar not just for parts of it, so overall we cannot use this grammar to implement a recursive descent parser.
2. What should the pre-condition P be in each of the following correctness statements for the statement to be an instance of Hoare's assignment axiom scheme?
(a) $P\{\mathrm{x}=1 ;\} \mathrm{x}<=2$
(b) $P\{\mathrm{y}=\mathrm{x}-\mathrm{y} ;\} \mathrm{y} * \mathrm{y}>5$
(c) $P\{i=i-k ;\}$ ForAll ($\mathrm{i}=0$; $\mathrm{i}<10$) $\mathrm{i}+\mathrm{k}>0$
(d) P \{ $\mathrm{i}=\mathrm{i}-\mathrm{k} ;\}$ Exists ($\mathrm{k}=0$; $\mathrm{k}<\mathrm{i}) \mathrm{k}+\mathrm{m}>\mathrm{i}$

Answer:

(a) $1<=2$ or true
(b) $(x-y) *(x-y)>5$ (note the parentheses)
(c) ForAll ($i=0 ; i<10$) $i+k>0$ (no change, since all the occurrences of i refer to the bound variable; this can be verified by renaming the bound variable i)
(d) Exists ($\mathrm{p}=0 ; \mathrm{p}<\mathrm{i}$) $\mathrm{p}+\mathrm{m}>\mathrm{i}-\mathrm{k}$ (the bound variable k was renamed because a free variable with the same name is introduced by the substitution; without such a renaming there will be two k variables, one bound and another free)
3. Add all the intermediate assertions and so produce the proof tableau for the following statements. If a statement is not valid then include in your respective tableau a pre-condition that is just strong enough to make the statement valid.
(a) ASSERT (true)
$\mathrm{m}=1$;
$\mathrm{n}=1$;
$\mathrm{n}=\mathrm{a}-\mathrm{b}$;
ASSERT (m*n > 0)
Answer: We have the following tableau:

```
ASSERT(a > b) // 4 - math
ASSERT(1*(a-b) > 0) // 3 - assignment
m = 1;
ASSERT(m*(a-b) > 0) // 2 - assignment
n = 1;
ASSERT(m*(a-b) > 0) // 1 - assignment
n = a-b;
ASSERT(m*n > 0)
```

The original precondition true is not stronger than $a>b$ and so the statement is not valid. The weakest pre-condition that makes the statement valid is given in the tableau.
(b) $\operatorname{ASSERT}(\mathrm{x}==\mathrm{y} *(\mathrm{y}+1))$
$\mathrm{y}=\mathrm{y}+1$;
$\mathrm{x}=\mathrm{x}+2$ * y ;
$\operatorname{ASSERT}(\mathrm{x}==\mathrm{y} *(\mathrm{y}+1))$

Answer: The statement is valid:

```
ASSERT(x == y*(y+1)) // 6 - math, qed
ASSERT(x == (y+1)*(y+1-1)) // 5 - assignment
y = y + 1;
ASSERT(x == y*(y-1)) // 4 - math
ASSERT(x == y*(y+1-2)) // 3 - math
ASSERT(x == y*(y+1) - 2*y) // 2 - math
ASSERT(x + 2*y == y*(y+1)) // 1 - assignment
x = x + 2*y;
ASSERT(x == y*(y+1))
```

(c) ASSERT(false)
$\mathrm{y}=1$;
$\operatorname{ASSERT}(\mathrm{x}+\mathrm{y}<=0)$
Answer: The statement is (vacuously) valid because there is no possible input data that makes the precondition true. There is no need to construct the full tableau.
(d) ASSERT(true)
if ($\mathrm{x}>=\mathrm{y}$) $\mathrm{x}=\mathrm{x}+1$; else $\mathrm{y}=\mathrm{x}-1$;
$\mathrm{z}=\mathrm{y}-1$;
$\operatorname{ASSERT}(\mathrm{z}<\mathrm{y}<\mathrm{x})$
Answer: If we assume that x and y are integers then the statement is valid:

```
ASSERT(true) // 10 - if, qed
if (x >= y)
    ASSERT(true && y <= x) // 9 - strengthening
    ASSERT(y <= x) // 8 - math
    ASSERT(y < x + 1) // 7 - assignment
    x = x + 1;
    ASSERT(y < x) // 3 - if
else
    ASSERT(true && !(x >= y)) // 6 - strengthening
    ASSERT(true) // 5 - math
    ASSERT(x - 1 < x) // 4 - assignment
    y = x - 1;
    ASSERT(y < x) // 3 - if
ASSERT(y < x) // 2 - math
ASSERT(y - 1 < y < x) // 1 - assignment
z = y - 1;
ASSERT(z < y < x)
```

If on the other hand x is a floating point number then Inference \#8 cannot be made and therefore the tableau cannot be completed.
The most immediate answer is therefore that the statement is valid under the following declarative interface:

```
int x,y;
```

