
CS 310, Assignment 5

Answers

1. Consider the following context-free grammar with start symbol (, nonterminals {(, �, �, �},
and terminals {0, 1}:

(→ �0 � → � � → �1 � → 1 � → � � → 0

(a) Compute all the sets First and Follow necessary to implement a recursive decent parser
for this grammar. However, do not list any unnecessary such a set.

Answer: We do not need to compute any sets for ((there is a single rule for that
symbol).

� has two rules and it is also the case that � ⇒∗
� so we need:

First(�) = {1, �$(} First(�1) = {0} Follow(�) = {0}

� also has two rules, one of them an �-rule, so we need:

First(1) = {1} Follow(�) = {0}

We do not need to compute any sets for � either (for again, there is a single rule for that
nonterminal).

(b) Investigate all the combinations of sets First and Follow that are involved in the im-
plementation of a recursive descent parser for this grammar. Explain how these com-
bination make the grammar suitable or unsuitable (as the case might be) for recursive
descent parsing.

Answer: The grammar is not suitable for recursive descent parsing since First(�1) ∩
Follow(�) = {0} ≠ ∅. In other words, when the next token is 0 we have no idea which
rule to use to rewrite �.

As far as � is concerned we are fine. When we see a 0 we know we should rewrite �

using the first rule, and a 1 directs us to the second rule. Unfortunately the parser is
for the whole grammar not just for parts of it, so overall we cannot use this grammar to
implement a recursive descent parser.

2. What should the pre-condition % be in each of the following correctness statements for the
statement to be an instance of Hoare’s assignment axiom scheme?

1

(a) % { x = 1; } x <= 2

(b) % { y = x - y; } y*y > 5

(c) % { i = i - k; } ForAll (i=0; i<10) i+k > 0

(d) % { i = i - k; } Exists (k=0; k<i) k+m > i

Answer:

(a) 1 <= 2 or true

(b) (x-y)*(x-y) > 5 (note the parentheses)

(c) ForAll (i=0; i<10) i+k > 0 (no change, since all the occurrences of i refer to the
bound variable; this can be verified by renaming the bound variable i)

(d) Exists (p=0; p<i) p+m > i-k (the bound variable k was renamed because a free vari-
able with the same name is introduced by the substitution; without such a renaming
there will be two k variables, one bound and another free)

3. Add all the intermediate assertions and so produce the proof tableau for the following
statements. If a statement is not valid then include in your respective tableau a pre-condition
that is just strong enough to make the statement valid.

(a) ASSERT(true)

m = 1;

n = 1;

n = a-b;

ASSERT(m*n > 0)

Answer: We have the following tableau:

ASSERT(a > b) // 4 - math

ASSERT(1*(a-b) > 0) // 3 - assignment

m = 1;

ASSERT(m*(a-b) > 0) // 2 - assignment

n = 1;

ASSERT(m*(a-b) > 0) // 1 - assignment

n = a-b;

ASSERT(m*n > 0)

The original precondition true is not stronger than a>b and so the statement is not valid.
The weakest pre-condition that makes the statement valid is given in the tableau.

(b) ASSERT(x == y*(y+1))

y = y + 1;

x = x + 2*y;

ASSERT(x == y*(y+1))

2

Answer: The statement is valid:

ASSERT(x == y*(y+1)) // 6 - math, qed

ASSERT(x == (y+1)*(y+1-1)) // 5 - assignment

y = y + 1;

ASSERT(x == y*(y-1)) // 4 - math

ASSERT(x == y*(y+1-2)) // 3 - math

ASSERT(x == y*(y+1) - 2*y) // 2 - math

ASSERT(x + 2*y == y*(y+1)) // 1 - assignment

x = x + 2*y;

ASSERT(x == y*(y+1))

(c) ASSERT(false)

y = 1;

ASSERT(x+y<=0)

Answer: The statement is (vacuously) valid because there is no possible input data that
makes the precondition true. There is no need to construct the full tableau.

(d) ASSERT(true)

if (x >= y) x = x + 1; else y = x - 1;

z = y - 1;

ASSERT(z < y < x)

Answer: If we assume that x and y are integers then the statement is valid:

ASSERT(true) // 10 - if, qed

if (x >= y)

ASSERT(true && y <= x) // 9 - strengthening

ASSERT(y <= x) // 8 - math

ASSERT(y < x + 1) // 7 - assignment

x = x + 1;

ASSERT(y < x) // 3 - if

else

ASSERT(true && !(x >= y)) // 6 - strengthening

ASSERT(true) // 5 - math

ASSERT(x - 1 < x) // 4 - assignment

y = x - 1;

ASSERT(y < x) // 3 - if

ASSERT(y < x) // 2 - math

ASSERT(y - 1 < y < x) // 1 - assignment

z = y - 1;

ASSERT(z < y < x)

3

If on the other hand x is a floating point number then Inference #8 cannot be made and
therefore the tableau cannot be completed.

The most immediate answer is therefore that the statement is valid under the following
declarative interface:

int x,y;

4

