
CS 310, Assignment 6

Answers

1. Verify the validity of the following correctness statements by adding all the intermediate
assertions and so producing the proof tableau. State all the mathematical facts used. All
variables are of type int.

ASSERT(x == x0)

int sign = -1;

if (x >= 0) sign = 1;

x = x * sign;

ASSERT(abs(x) == abs(x0) && x >= 0)

abs(x) refers to the absolute value of x.

Answer:

ASSERT(x == x0) // 11 strengthen, qed

ASSERT(abs(x) == abs(x0)) // 10 math

ASSERT(abs(x) == abs(x0) && -1 == -1) // 9 assignment

int sign = -1;

ASSERT(abs(x) == abs(x0) && sign == -1) // 8 if

if (x >= 0)

ASSERT(abs(x) == abs(x0) && x >= 0 && sign == -1) // 7 strengthen

ASSERT(abs(x) == abs(x0) && x >= 0) // 6 assignment

sign = 1;

ASSERT(abs(x*sign) == abs(x0) && x*sign >= 0) // 2 if

else

ASSERT(abs(x) == abs(x0) && x < 0 & sign == -1) // 5 strengthen

ASSERT(abs(x) == abs(x0) && x <= 0 & sign == -1) // 4 math

ASSERT(abs(x*sign) == abs(x0) && x*sign >= 0

&& sign == -1) // 3 strengthen

ASSERT(abs(x*sign) == abs(x0) && x*sign >= 0) // 2 if

ASSERT(abs(x*sign) == abs(x0) && x*sign >= 0) // 1 assignment

x = x * sign;

ASSERT(abs(x) == abs(x0) && x >= 0)

1

2. Assume a declarative interface where n and max are constant integers, and A is an array of
integers of size max. Consider the following correctness statement:

ASSERT(1 < n <= max)

int i;

i = n-1;

A[n-1] = 1;

while(i >= 1) {

A[i-1] = A[i] + n - i + 1;

i = i-1;

}

ASSERT(ForAll(k = 0; k < n) A[k] == (n-k)*(n-k+1)/2)

(a) Give a complete proof tableau for the above correctness statement by adding all the
intermediate assertions.

Answer: The proof is tedious, but otherwise straightforward:

ASSERT(1 < n <= max) // 20 local var

int i;

ASSERT(1 < n <= max) // 19 math

ASSERT(1 == 1*2/2 && 1 < n <= max) // 18 math

ASSERT((A| n-1 -> 1)[n-1] == (n-n+1)*(n-n-1+1)/2

&& 1 < n <= max && 0 <= n-1 < n) // 17 array comp

ASSERT(ForAll(k = n-1; k < n) (A| n-1 -> 1)[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= n-1 < n) // 16 assignment

i = n-1;

ASSERT(ForAll(k = i; k < n) (A| n-1 -> 1)[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i < n) // 15 assignment

A[n-1] = 1;

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i < n) // 14 while

while(i >= 1) {

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i < n && i >= 1) // 13 math

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i-1 < n && i >= 1) // 12 strengthen

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i-1 < n) // 11 math

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& (n-i+2)/2 == (n-i+2)/2

&& 1 < n <= max && 0 <= i-1 < n) // 10 math

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& (n-i)/2 + 1 == (n-i+2)/2

&& 1 < n <= max && 0 <= i-1 < n) // 9 math

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

2

&& (n-i)*(n-i+1)/2 + n-i+1 == (n-i+1)*(n-i+2)/2

&& 1 < n <= max && 0 <= i-1 < n) // 8 math

FACT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

=> A[i] == (n-i)*(n-i+1)/2)

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& A[i] + n - i + 1 == (n-(i-1))*(n-(i-1)+1)/2

&& 1 < n <= max && 0 <= i-1 < n) // 7 array comp

ASSERT(A’ == (A | i-1 -> A[i] + n - i + 1)

&& ForAll(k = i; k < n) A’[k] == (n-k)*(n-k+1)/2

&& A’[i-1] == (n-(i-1))*(n-(i-1)+1)/2

&& 1 < n <= max && 0 <= i-1 < n) // 6 math

ASSERT(A’ == (A | i-1 -> A[i] + n - i + 1)

&& ForAll(k = i-1; k < n) A’[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i-1 < n) // 5 assignment

A[i-1] = A[i] + n - i + 1;

ASSERT(ForAll(k = i-1; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i-1 < n) // 4 assignment

i = i-1;

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& 1 < n <= max && 0 <= i < n) // 3 while

}

ASSERT(ForAll(k = i; k < n) A[k] == (n-k)*(n-k+1)/2

&& i < 1 && 1 < n <= max && 0 <= i < n) // 2 math

ASSERT(ForAll(k = 0; k < n) A[k] == (n-k)*(n-k+1)/2

&& i < 1 && 1 < n <= max && 0 <= i < n) // 1 strengthen

ASSERT(ForAll(k = 0; k < n) A[k] == (n-k)*(n-k+1)/2)

(b) Provide a formal argument for the total correctness of the statement.

Answer: A suitable variant is i itself, as follows:

i. Before entering the loop i == n-1 and so i >= 0 (since n > 1 according to the
precondition).

ii. The loop terminates when i == 0 (since in this case the loop condition i >= 1 is
false).

iii. i decreases monotonically and continuously during the loop execution since it is
decremented at each iteration. Note in passing that in this particular example it is
enough to establish a monotonic decrease since the loop condition is an inequality
(so the continuity is not necessary).

The existence of the variant i establishes the loop termination under all circumstances
allowed by the precondition and so the statement is totally correct.

3. A machine makes screws and nuts using a tap (for the nuts) and a die (for the screws).
The tool (tap or die) has to be changed between screws and nuts. Let such a machine be

3

specified by the following CSP process where the actions screw and nut represent the process
of manufacturing a screw or a nut, respectively. The action check verifies that the right tool
is being used for the next part and changes the tool if necessary (from tap to die or the other
way around as appropriate).

NUT = check → nut → NUT
SCREW = screw → check → SCREW
MACHINE = NUT | | SCREW

(a) Draw the transition graph of the process MACHINE.

Answer: The transition graphs for NUT and SCREW (abbreviated # and (, respec-
tively) are as follows:

#

#
′

(

(
′

checknut screwcheck

The only synchronized action is check (common between the two processes) while
nut and screw are unsynchronized. We then have the following transition graph for
MACHINE:

#‖(#‖(′

#
′‖(′

#
′‖(

screw

check
nut

screw

nut

(b) Obviously the tool needs to be checked (and changed) between making nuts and making
screws. Is this requirement always observed by MACHINE? Explain why or why not
as the case might be.

Answer: The requirement to check the tool between screws and nuts is not observed.
The tool is checked after the first screw, but afterward it is possible to make a screw
immediately followed by making a nut without any check in between along the path

#
′‖(

screw
−→ #

′‖(′ nut
−→ #‖(′. It is also possible to make a nut followed immediately by

making a screw; this happens along the path #
′‖(

nut
−→ #‖(

screw
−→ #‖(′.

4

