Alphabets, strings, and languages

Stefan D. Bruda

CS 310, Winter 2025

FORMAL LANGUAGES

Alphabets, strings, and languages (S. D. Bruda)

ALPHABETS AND STRINGS

@ Alphabet X: a finite set of symbols

@ Strings (not sets!) over an alphabet

@ The set of all strings over ¥: ¥*; Empty string: ¢
@ Operations on strings:

e Length (Jw|), concatenation (- or juxtaposition), substring, suffix, prefix

@ ¢ is the identity for concatenation (ew = we = w)
@ astring w is a trivial prefix, suffix and substring of itself
@ ¢ is a trivial prefix, suffix and substring of any string

o Length over a set A: |w|a is the length of the string w from which all the
symbols not in A have been erased

@ Abuse of notation: |w|a is a shorthand for [w/| 4
o Exponentiation: w” = n copies of w concatenated together
@ Recursive definition: w0 = ¢; wt! = wiw

o Reversal: w=¢c= wl =¢;forae &: w = vua= wk = au®

CS 310, Winter2025 1/5

FORMAL LANGUAGES (CONT’D)

@ (Formal) language: well defined set of strings; example: ©*
@ Abuse of notation: For a € © we simply write a instead of {a}

@ Operations: union (U, +), intersection (N), difference (\), complement
(A=%"\A)

e Union is commutative, associative, and idempotent, with () as identity

@ Concatenation: LiLly = {wiwe : wy € L1 Aws € Lp}

o Associative, distributive to +, identity: ¢, zero:)

@ Exponentiation: L" = {wywa...w,: V1 <i<n:w €L}

@ Closure (Kleene closure): '
L={wiwz---wp:n>0AV1<i<n:wel}=>%,,L
L=+ L +1241834...) -

@ Recursion: L = f(L)

e B=c¢+0B1

@ The empty string is an element of B
@ Forany b € B, 0b1 is also a string in B
@ These are the only elements of B

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 2/5

@ Recursion (contd):

@ Another example: P=¢+0+ 1+ 0P0 + 1P1
o How to solve a recursive equation L = f(L) defined using only , symbols in
Y, union, and concatenation:

(] L0:0
] Forj:0,1,2,...: L]+1=f(l_])

o Note that L above is the smallest solution of the equation L = f(L)
o l'=f(l)y=LCLl

@ The scheme above is also generalizable to kK mutually recursive equations
@ Suchas L= f(L,M)and M = g(L, M) (for k = 2)

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 3/5

s
KEY PROBLEMS IN FORMAL LANGUAGES i~ | PRACTICAL EXAMPLES OF REGULAR EXPRESSIONS

([+-] +¢)[0—9][0 — 9]".[0 — 9][0 — 9" (E([+—] + €)[0 — 9][0 — 9]" + ¢)
@ Specification: formalized notations for rigorous definitions

@ Realization: systematic methods for programming recognizers letter. = [A—Za-z]
@ Classification: organize the space of formal languages into a hierarchy of digit = [0-9]
classes id = letter_(letter_ + digit)"
@ Languages can be classified by the set of operations used to define them digits = digit digit”
o All the languages defined using only symbols from %, union, and i .
concatenation are finite languages; we can define every finite language if we fraction = . digits
add e and exp = E ([+-]+¢)digits
o Languages defined using only union, concatenation, and closure from number = digits fraction? exp?
symbols from X, ¢, and () are called regular languages i]
@ A language description as above is called a regular expression it = if
e Languages defined using only union, concatenation, and recursion from then = then
symbols from ¥, ¢, and () are called context-free languages else = else
@ A language description as above is called a context-free grammar
relop = <+ >+ <=+ >=+ == +1=

o finite C regular C context-free C unrestricted

NCG*\N), NG *\) 00\ ([0-91%\)$
= \2 \1:\, (downcase (concat (substring \2 0 1) \1)):CS\3

Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 4/5 Alphabets, strings, and languages (S. D. Bruda) CS 310, Winter 2025 5/5

