
State Transition Diagrams

Stefan D. Bruda

CS 310, Winter 2025

STATE TRANSITION DIAGRAMS

Finite directed graph
Edges (transitions) labeled with symbols from an alphabet
Nodes (states) labeled only for convenience
One initial state
Several accepting states

0s
1s

0

1

1

0

A string c1c2c3 . . . cn is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the
sequence of labels along the path is c1, c2, . . . , cn

1
c

2
c

3
c

n
c

Same state might be visited more than once
Intermediate states might be accepting (but it does not matter)

The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 1 / 11

DETERMINISTIC FINITE AUTOMATA

A state diagram describes graphically a deterministic finite automaton
(DFA), a machine that at any given time is in one of finitely many states,
and whose state changes according to a predetermined way in response
to a sequence of input symbols
Formal definition: a deterministic finite automaton is a tuple
M = (K ,Σ, δ, s,F)

K ⇒ finite set of states
Σ ⇒ input alphabet
F ⊆ K ⇒ set of accepting states
s ∈ K ⇒ initial state
δ : K × Σ → K ⇒ transition function

1

q1
q2

q4q3

1

0

1

0

0

0

1

K = {q1,q2,q3,q4}
Σ = {0,1}
F = {q3,q4}
s = q1

δ(q1,0) = q1 δ(q1,1) = q2
δ(q2,0) = q3 δ(q2,1) = q4
δ(q3,0) = q4 δ(q3,1) = q1
δ(q4,0) = q4 δ(q4,1) = q3

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 2 / 11

SOFTWARE REALIZATION

Big practical advantages of DFA: very easy to implement:
Interface to define a vocabulary and a function to obtain the input tokens

typename vocab; /* alphabet + end-of-string */

const vocab EOS; /* end-of-string pseudo-token */

vocab gettoken(void); /* returns next token */

Variable (state) changed by a simple switch statement as we go along
int main (void) {

typedef enum {S0, S1, ... } state;

state s = S0; vocab t = gettoken();

while (t != EOS) {

switch (s) {

case S0: if (t == ...) s = ...; break;

if (t == ...) s = ...; break;

...

case S1: ...

...

} /* switch */

t = gettoken(); } /* while */

/* accept iff the current state s is final */

}

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 3 / 11

SOFTWARE REALIZATION: EXAMPLE

typedef enum {ZERO, ONE, EOS} vocab;

vocab gettoken(void) {

int c = getc(stdin);

if (c == ’0’) return ZERO;

if (c == ’1’) return ONE;

if (c == ’\n’) return EOS;

perror("illegal character"); }

int main (void) {

typedef enum {S0, S1 } state;

state s = S0; vocab t = gettoken();

while (t != EOS) {

switch (s) {

case S0: if (t == ONE) s = S1; break;

/* if (t == ZERO) s = S0; break */

case S1: if (t == ONE) s = S0; break;

/* if (t == ZERO) s = S1; break */ } /* switch */

t = gettoken(); } /* while */

if (s != S0) printf("String not accepted.\n"); }

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 4 / 11

NONDETERMINISM

So far the state diagrams are deterministic = for any pair (state, input
symbol) there can be at most one outgoing transition
A nondeterministic diagram allows for the following situation:

a

q2

q3

q1

a

The acceptance condition remains unchanged:
A string c1c2c3 . . . cn is accepted by a state transition diagram if there exists
some path from the starting state to an accepting state such that the
sequence of labels along the path is c1, c2, . . . , cn

Why nondeterminism?
Simplifies the construction of the diagram

Σ

q0
q1 q2

m a n
q3

A nondeterministic diagram can be much smaller than the smallest possible
deterministic state diagram that recognizes the same language

Also known as nondeterministic finite automata (NFA)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 5 / 11

SOFTWARE REALIZATION

As above, except that we have to keep track of a set of states at any
given time
typedef enum { Q0, Q1, Q2, Q3 } state;

int main (void) {

vocab t = gettoken(); StateSet A; A.include(Q0);

while (t != EOS) {

StateSet NewA;

for (state s in A) {

switch (s) {

case Q0: NewA.include(Q0);

if (t == ’m’) NewA.include(Q1); break;

case Q1: if (t == ’a’) NewA.include(Q2); break;

case Q2: if (t == ’n’) NewA.include(Q3); break;

case Q3: break;

}

}

A = NewA; t = gettoken();

}

/* accept iff (Q3 in A) */

}

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 6 / 11

SOFTWARE REALIZATION (CONT’D)

This kind of implementation is fine for “throw-away” automata
Text editor search function searches for a pattern in the text
The next search is likely to be different so a brand new automaton needs to
be created

Some times the automaton is created once and then used multiple times
The lexical structure of a programming language is well established
Lexical analysis in a compiler is accomplished by an automaton that never
changes
In such a case it is more efficient to precalculate the set of states

Exactly as in the previous program
Except that we no longer have an input to guide us, so we calculate the sets
NewA for all possible inputs
We obtain a DFA that is equivalent to the given NFA (i.e., recognizes the same
language)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 7 / 11

PRECALCULATING STATE SETS

Precalculating all the sets of states effectively constructs a deterministic
state transition diagram that is equivalent to the original
(nondeterministic) state transition diagram:

algorithm DETERMINIZE(M = (K ,Σ,∆, s,F)) returns M′ = (K ′,Σ, δ′, s′,F ′):
S ← {{s}} (active states)
K ′ ← ∅ (done states)
δ′ ← ∅ (start with no transitions)
while S ̸= ∅ do

Choose A ∈ S (any state will do)
S ← S \ {A}
K ′ ← K ′ ∪ {A} (state A processed now)
foreach a ∈ Σ do (each action will lead to a new state NewA)

NewA← ∅
foreach (p, a, q) ∈ ∆ ∧ p ∈ A do

NewA← NewA + q (for every p in A and p a→ q we add q)
if NewA ̸= ∅ then (if NewA is empty then there is no transition)

Add to δ′ transition A a→ NewA
if NewA ̸∈ S ∪ K ′ then if NewA is processed we are done

S ← S ∪ {NewA} (otherwise we add it to the queue)

s′ ← {s}
F ′ ← {p ∈ K ′ : K ′ ∩ F ̸= ∅} (a single accepting state will do)

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 8 / 11

ε-TRANSITIONS

Useful at times to have “spontaneous” transitions = transitions that
change the state without any input being read = ε-transitions

Only available for nondeterministic state transition diagrams!

Example of usefulness: Construct the state transition diagram for the
language

{0,1}∗01{0,1}∗ + {w ∈ {0,1}∗ : w has an even number of 1’s}

Even better ε-transitions can be eliminated afterward

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 9 / 11

ELIMINATING ε-TRANSITIONS

For every diagram M with ε-transitions a new diagram without ε-transitions
can be constructed as follows:

1 Make a copy M ′ of M where the ε-transitions have been removed.
Remove states that have only ε-transitions coming in except for the
starting state

2 Add transitions to M ′ as follows: whenever M has a chain of ε-transitions
followed by a “real” transition on x :

⃝q ε−→⃝ ε−→ · · · ε−→⃝ x−→⃝p
add to M ′ a transition from state q to state p labeled by x :

⃝q x−→⃝p
Note that q and p may be any states
In particular this step is also used in the case where q = p

3 If M has a chain of ε-transitions from a state r to an accepting state, then
r is made to be an accepting state of M ′.

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 10 / 11

EXAMPLES FROM LEXICAL ANALYSIS

Lexical analysis splits the input of a compiler
(program) into lexical units (tokens)
First step of compilation, easy to implement using
state transition diagrams

0 1 2

3

4

5

6

7

8

< =

>

oth=

>

=

oth

return 〈relop, LE〉

return 〈relop, NE〉

* return 〈relop, LT〉
return 〈relop, EQ〉

return 〈relop, GE〉

* return 〈relop, GT〉

When returning from *-ed states must “put back” the last
character read

digit

.

digit

E

+|−

digit

other

other

other

E

dgt

digit

digit

digit

State Transition Diagrams (S. D. Bruda) CS 310, Winter 2025 11 / 11

