Context-free languages

Stefan D. Bruda

CS 310, Winter 2025

CONTEXT-FREE GRAMMARS

@ Recall that languages defined using only union, concatenation, and
recursion from symbols from X, ¢, and () are called context-free
languages

e A language description as above is called a context-free grammar
@ Examples: B=¢+0B1,L=¢+1+0+0L0+ 1L1
e The customary way of writing down a context-free grammar is using a
definition by cases rather than the recursive equation (the Backus-Naur form

or BNF)
B — ¢ (balanced) ::=
B — O0Bf (balanced) := 0 (balanced) 1
L — ¢ (palindrome) ::=
L —- 0 (palindrome) == 0
L — 1 (palindrome) = 1
L — O0LO (palindrome) ::= 0 (palindrome) 0
L — 1L1 (palindrome) := 1 (palindrome) 1
(palindrome) ::= ¢ | 0|10 (palindrome) 0 | 1 (palindrome) 1

CS 310, Winter 2025 1/ 11

Context-free languages (S. D. Bruda)

CONTEXT-FREE GRAMMARS (CONT'D)

@ Formally a context-free grammar is a tuple G = (N, ¥, R, S), where

@ X is an alphabet of terminals
e N alphabet of symbols called by contrast nonterminals

@ Traditionally nonterminals are capitalized or surrounded by (and), everything
else being a terminal

@ S € Nis the axiom (or the start symbol)
@ RC N x (N+ X)" is the set of (rewriting) rules or productions

@ Common ways of expressing (o, 8) € R: v — fora == f3
@ Further examples:

(stmt)

T [) — (o)
| (exp) (op) (exp) | if ((exp)) (stmt) else (stmt)
| (({exp)) | while ((exp)) (stmt)

(op) = = Ix]/ [{sea)

(seq) e | (stmt) (seq)

Context-free languages (S. D. Bruda) CS 310, Winter 2025 2/ 11

DERIVATIONS

e G=(N,X,R,S)
@ Arewriting rule A — v’ € R is used to rewrite its left-hand side (A) into its
right-hand side (v'):
eu=v iff 3Ix,yeN+2)*:3AeN:u=xAy,v=xv'y,A—-Vv' eR
@ Rewriting can be chained (=*, the reflexive and transitive closure of = =
derivation)

o s="diffs=¢5,s= &, orthere exist strings s1, so, ..., Sy such that
S=8S =>S=> =8 =5
e (pal) = 0(pal)0 = 01(pal)10 = 010(pal)010 = 0101010

(pal) == €|0]1]|0(pal)0|1 (pal)1

@ The language generated by grammar G: exactly all the terminal strings
generated from S: L(G) = {we X" : S=" w}
e Same language as defined by the respective recursive equation (and the
approximation scheme shown earlier)

Context-free languages (S. D. Bruda) CS 310, Winter 2025 3/ 11

PARSE TREES

@ Definition:
@ Forevery ac N + X the following is a parse tree (with yield a):

®a
@ Forevery A — ¢ € Rthe following is a parse tree (with yield ¢): :‘2

@ If the following are parse trees (with yields yi, ya, ..., ya, respectively):

A, A, A,
Tl T2

and A — AiAz ... A, € R, then the following is a parse tree (with yield
Y1iYo ... Yn):

@ Yield: concatenation of leaves in inorder

Context-free languages (S. D. Bruda) CS 310, Winter 2025 4/ 11

DERIVATIONS AND PARSE TREES

@ Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)

@ Two derivations are similar iff only the order of rule application varies =
can obtain one derivation from the other by repeatedly flipping
consecutive rule applications

e Two similar derivations have identical parse trees

L R
e Can use a “standard” derivation: leftmost (A =" w) or rightmost (A =" w)

The following statements are equivalent:
@ there exists a parse tree with root A and yield w

0 A=*w

L
o A=*w

R
0o A=*w

@ Ambiguity of a grammar: there exists a string that has two derivations
that are not similar (i.e., two derivations with diferent parse trees)
e Can be inherent or not — impossible to determine algorithmically

Context-free languages (S. D. Bruda) CS 310, Winter 2025 5/ 11

CONTEXT-FREE AND REGULAR LANGUAGES

@ Regular grammar: G = (N, %, R, S) with N, ¥, S as before, and
RCNx(e+X+XN)
e Special form of context-free grammar (only rules of form A — ¢, A — a, and
A — aB allowed)

Exactly all the regular languages are generated by reqular grammars I

o Let M = (K, X, A, s, F) be some finite automaton
@ We construct the grammar G = (K, ¥, s, R) with

R={g—ap:(gq,ap)cAt+{g—c:qgcF}

All regular languages are context-free I

@ However, there are more context-free than regular languages

S—asSh S—¢

Context-free languages (S. D. Bruda) CS 310, Winter 2025 6/ 11

PUSH-DOWN AUTOMATA

@ Push-down automaton: finite automaton + “push-down store” (or stack)
o M=(K,X,T,A s F)
e K, %, s, F as before (for finite automata)
e [is the stack alphabet
o AC{(Kx(Z+{e}) xIM) x(KxTI")}
e Transition: ((qg,a,7),(q’,v")) with a the current input symbol (or ¢), v the old
stack top, and ~' the replacement top

@ Graphical representation: e ay—v

@ Acceptance: there exists a path (or run) that spells the input and ends in
a final state and the stack is empty at the beginning as well as at the end
of the path

0,e—0 0,0—¢
0,e—0 1,0—¢ Le—1l Ll—e

EE—E

1,0—¢ .
(@) ————@) (@)

Context-free languages (S. D. Bruda) CS 310, Winter 2025 7/ 11

PDA AND CONTEXT-FREE LANGUAGES

Theorem: Push-down automata accept exactly all the context-free languages I

@ DO: Given the grammar G = (N, ¥, S, R) construct the push-down
automaton M = (K, X,I, A, s, F) such that:

F = Nat VaeX:aq,a— ¢
K = {p,q}

s = p o) _EE€—S

F = {q} & @

A = {((pee).(q,95))}

+ {((9,¢,A),(9,0)) :A— € R}
+ {((9,a a),(q,¢)) :ac ¥}

VA—-aeR:,A—a

@ C: Proof left for a full course in formal languages

Context-free languages (S. D. Bruda) CS 310, Winter 2025 8/ 11

CLOSURE PROPERTIES

@ Consider two grammars with axioms Sy and S,; construct a grammar
with axiom S

@ Context-free languages are closed under

Union: Addrules S — Syand S — S,

Concatenation: Add rule S — $; S

Kleene star: Add rules S — ¢ and S — SS;
Intersection and complement:

@ If context-free languages are not closed under one of these then they are not
closed under the other either

Context-free languages (S. D. Bruda) CS 310, Winter 2025 9/ 11

PUMPING CONTEXT-FREE LANGUAGES

@ Let (@) be the maximum fanout (branching factor) of any node in any
parse tree constructed based on grammar G

@ A parse tree of height h has a yield of size no more than ¢(G)"

Theorem (Pumping context-free languages)

Letn= ®(G)Nl. Forany w € L(G) such that |w| > n we can write w as
uvxyz such that vy # ¢, lvxy| < nand uv'xy'z € £(G) foranyi >0

Context-free languages (S. D. Bruda) CS 310, Winter 2025 10/ 11

PUMPING CONTEXT-FREE LANGUAGES (CONT'D)

@ Some interesting non-context-free languages:
e {a"b"c":n>0}
e {a": nis prime}
o {we{ab,c}”:|wla=|w|p=|W|c}

Context-free languages are not closed under intersection and complement I

e Indeed, {a"b"c": n>0} ={a"b"c™:n,m>0}n{a"b"’c" : n,m > 0}
e That {a"b"c™ : n,m > 0} is context free can be shown by constructing a
grammar/automaton or by using closure properties

@ Tricky language: {w € {a,b,c}* : |w|; = |w|p = |W|c} satisfies the
pumping lemma yet is not context-free

Context-free languages (S. D. Bruda) CS 310, Winter 2025 11/ 11

