
Context-free languages

Stefan D. Bruda

CS 310, Winter 2025

CONTEXT-FREE GRAMMARS

Recall that languages defined using only union, concatenation, and
recursion from symbols from Σ, ε, and ∅ are called context-free
languages

A language description as above is called a context-free grammar
Examples: B = ε+ 0B1, L = ε+ 1 + 0 + 0L0 + 1L1

The customary way of writing down a context-free grammar is using a
definition by cases rather than the recursive equation (the Backus-Naur form
or BNF)

B → ε
B → 0B1

⟨balanced⟩ ::=
⟨balanced⟩ ::= 0 ⟨balanced⟩ 1

L → ε
L → 0
L → 1
L → 0L0
L → 1L1

⟨palindrome⟩ ::=
⟨palindrome⟩ ::= 0
⟨palindrome⟩ ::= 1
⟨palindrome⟩ ::= 0 ⟨palindrome⟩ 0
⟨palindrome⟩ ::= 1 ⟨palindrome⟩ 1

⟨palindrome⟩ ::= ε | 0 | 1 | 0 ⟨palindrome⟩ 0 | 1 ⟨palindrome⟩ 1

Context-free languages (S. D. Bruda) CS 310, Winter 2025 1 / 11

CONTEXT-FREE GRAMMARS (CONT’D)

Formally a context-free grammar is a tuple G = (N,Σ,R,S), where
Σ is an alphabet of terminals
N alphabet of symbols called by contrast nonterminals

Traditionally nonterminals are capitalized or surrounded by ⟨ and ⟩, everything
else being a terminal

S ∈ N is the axiom (or the start symbol)
R ⊆ N × (N +Σ)∗ is the set of (rewriting) rules or productions

Common ways of expressing (α, β) ∈ R: α → β or α ::= β

Further examples:

⟨exp⟩ ::= ⟨const⟩
| ⟨var⟩
| ⟨exp⟩ ⟨op⟩ ⟨exp⟩
| (⟨exp⟩)

⟨op⟩ ::= + | − | ∗ | /

⟨stmt⟩ ::= ;
| ⟨var⟩ = ⟨exp⟩ ;
| if (⟨exp⟩) ⟨stmt⟩ else ⟨stmt⟩
| while (⟨exp⟩) ⟨stmt⟩
| { ⟨seq⟩ }

⟨seq⟩ ::= ε | ⟨stmt⟩ ⟨seq⟩

Context-free languages (S. D. Bruda) CS 310, Winter 2025 2 / 11

DERIVATIONS

G = (N,Σ,R,S)

A rewriting rule A → v ′ ∈ R is used to rewrite its left-hand side (A) into its
right-hand side (v ′):

u ⇒ v iff ∃ x , y ∈ (N +Σ)∗ : ∃A ∈ N : u = xAy , v = xv ′y ,A → v ′ ∈ R

Rewriting can be chained (⇒∗, the reflexive and transitive closure of ⇒ =
derivation)

s ⇒∗ s′ iff s = s′, s ⇒ s′, or there exist strings s1, s2, . . . , sn such that
s ⇒ s1 ⇒ s2 ⇒ · · · ⇒ sn ⇒ s′

⟨pal⟩ ⇒ 0⟨pal⟩0 ⇒ 01⟨pal⟩10 ⇒ 010⟨pal⟩010 ⇒ 0101010

⟨pal⟩ ::= ε | 0 | 1 | 0 ⟨pal⟩ 0 | 1 ⟨pal⟩ 1

The language generated by grammar G: exactly all the terminal strings
generated from S: L(G) = {w ∈ Σ∗ : S ⇒∗ w}

Same language as defined by the respective recursive equation (and the
approximation scheme shown earlier)

Context-free languages (S. D. Bruda) CS 310, Winter 2025 3 / 11

PARSE TREES

Definition:
1 For every a ∈ N +Σ the following is a parse tree (with yield a): a

2 For every A → ε ∈ R the following is a parse tree (with yield ε): A

ε

3 If the following are parse trees (with yields y1, y2, . . . , yn, respectively):

n1
A

2
...T

1
T

2
T

n

AA

and A → A1A2 . . .An ∈ R, then the following is a parse tree (with yield
y1y2 . . . yn):

A

1
A

2
...T

1
T

2
T

n

A
n

A

Yield: concatenation of leaves in inorder

Context-free languages (S. D. Bruda) CS 310, Winter 2025 4 / 11

DERIVATIONS AND PARSE TREES

Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)
Two derivations are similar iff only the order of rule application varies =
can obtain one derivation from the other by repeatedly flipping
consecutive rule applications

Two similar derivations have identical parse trees

Can use a “standard” derivation: leftmost (A
L

⇒∗ w) or rightmost (A
R
⇒∗ w)

Theorem
The following statements are equivalent:

there exists a parse tree with root A and yield w

A ⇒∗ w

A
L

⇒∗ w

A
R

⇒∗ w

Ambiguity of a grammar: there exists a string that has two derivations
that are not similar (i.e., two derivations with diferent parse trees)

Can be inherent or not — impossible to determine algorithmically

Context-free languages (S. D. Bruda) CS 310, Winter 2025 5 / 11

CONTEXT-FREE AND REGULAR LANGUAGES

Regular grammar: G = (N,Σ,R,S) with N, Σ, S as before, and
R ⊆ N × (ε+Σ+ ΣN)

Special form of context-free grammar (only rules of form A → ε, A → a, and
A → aB allowed)

Theorem
Exactly all the regular languages are generated by regular grammars

Let M = (K ,Σ,∆, s,F) be some finite automaton
We construct the grammar G = (K ,Σ, s,R) with

R = {q → ap : (q, a, p) ∈ ∆}+ {q → ε : q ∈ F}

Corollary
All regular languages are context-free

However, there are more context-free than regular languages

S → aSb S → ε

Context-free languages (S. D. Bruda) CS 310, Winter 2025 6 / 11

PUSH-DOWN AUTOMATA

Push-down automaton: finite automaton + “push-down store” (or stack)
M = (K ,Σ, Γ,∆, s,F)

K , Σ, s, F as before (for finite automata)
Γ is the stack alphabet
∆ ⊆ {(K × (Σ + {ε})× Γ∗)× (K × Γ∗)}
Transition: ((q, a, γ), (q′, γ′)) with a the current input symbol (or ε), γ the old
stack top, and γ′ the replacement top

Graphical representation: q q′
, γ "→ γ′

Acceptance: there exists a path (or run) that spells the input and ends in
a final state and the stack is empty at the beginning as well as at the end
of the path

q0 q1

0, ϵ !→ 0

1, 0 !→ ϵ

1, 0 !→ ϵ

q0 q1

0, ϵ !→ 0
1, ϵ !→ 1

ϵ, ϵ !→ ϵ

0, 0 !→ ϵ
1, 1 !→ ϵ

Context-free languages (S. D. Bruda) CS 310, Winter 2025 7 / 11

PDA AND CONTEXT-FREE LANGUAGES

Theorem
Theorem: Push-down automata accept exactly all the context-free languages

⊇: Given the grammar G = (N,Σ,S,R) construct the push-down
automaton M = (K ,Σ, Γ,∆, s,F) such that:

Γ = N +Σ

K = {p,q}
s = p
F = {q}
∆ = {((p, ε, ε), (q,S))}

+ {((q, ε,A), (q, α)) : A → α ∈ R}
+ {((q,a,a), (q, ε)) : a ∈ Σ}

p q
ϵ, ϵ 7→ S

∀ ∈  : ,  7→ ϵ

∀A→ α ∈ R : ϵ, A 7→ α

⊆: Proof left for a full course in formal languages

Context-free languages (S. D. Bruda) CS 310, Winter 2025 8 / 11

CLOSURE PROPERTIES

Consider two grammars with axioms S1 and S2; construct a grammar
with axiom S
Context-free languages are closed under

Union: Add rules S → S1 and S → S2

Concatenation: Add rule S → S1S2

Kleene star: Add rules S → ε and S → SS1
Intersection and complement:

If context-free languages are not closed under one of these then they are not
closed under the other either

Context-free languages (S. D. Bruda) CS 310, Winter 2025 9 / 11

PUMPING CONTEXT-FREE LANGUAGES

Let Φ(G) be the maximum fanout (branching factor) of any node in any
parse tree constructed based on grammar G
A parse tree of height h has a yield of size no more than Φ(G)h

Theorem (Pumping context-free languages)
Let n = Φ(G)|N|. For any w ∈ L(G) such that |w | ≥ n we can write w as
uvxyz such that vy ̸= ε, |vxy | ≤ n and uv ixy iz ∈ L(G) for any i ≥ 0

zx y

A

A

u v

Context-free languages (S. D. Bruda) CS 310, Winter 2025 10 / 11

PUMPING CONTEXT-FREE LANGUAGES (CONT’D)

Some interesting non-context-free languages:
{anbncn : n ≥ 0}
{an : n is prime}
{w ∈ {a, b, c}∗ : |w |a = |w |b = |w |c}

Corollary
Context-free languages are not closed under intersection and complement

Indeed, {anbncn : n ≥ 0} = {anbncm : n,m ≥ 0} ∩ {ambncn : n,m ≥ 0}
That {anbncm : n,m ≥ 0} is context free can be shown by constructing a
grammar/automaton or by using closure properties

Tricky language: {w ∈ {a,b, c}∗ : |w |a = |w |b = |w |c} satisfies the
pumping lemma yet is not context-free

Context-free languages (S. D. Bruda) CS 310, Winter 2025 11 / 11

