Context-free languages

Stefan D. Bruda

CS 310, Winter 2025

CONTEXT-FREE GRAMMARS

- Recall that languages defined using only union, concatenation, and recursion from symbols from Σ , ε , and \emptyset are called context-free languages
 - A language description as above is called a context-free grammar
 - Examples: $B = \varepsilon + 0B1$, $L = \varepsilon + 1 + 0 + 0L0 + 1L1$
 - The customary way of writing down a context-free grammar is using a definition by cases rather than the recursive equation (the Backus-Naur form or BNF)

```
(balanced) ::=
        \varepsilon
        0B1
                                  ⟨balanced⟩ ::= 0 ⟨balanced⟩ 1
                                  (palindrome)
                                  (palindrome)
                                                     ::= 0
                                  (palindrome)
                                                     ::= 1
 \rightarrow 0L0
                                  (palindrome)
                                                            0 (palindrome) 0
                                                     ::=
                                                            1 (palindrome) 1
       1L1
                                  (palindrome)
                                                     ::=
\langle palindrome \rangle ::= \varepsilon \mid 0 \mid 1 \mid 0 \langle palindrome \rangle 0 \mid 1 \langle palindrome \rangle 1
```

CONTEXT-FREE GRAMMARS (CONT'D)

- Formally a context-free grammar is a tuple $G = (N, \Sigma, R, S)$, where
 - Σ is an alphabet of terminals
 - N alphabet of symbols called by contrast nonterminals
 - Traditionally nonterminals are capitalized or surrounded by \(\) and \(\), everything else being a terminal
 - $S \in N$ is the axiom (or the start symbol)
 - $R \subseteq N \times (N + \Sigma)^*$ is the set of (rewriting) rules or productions
 - Common ways of expressing $(\alpha, \beta) \in R: \alpha \to \beta$ or $\alpha ::= \beta$
- Further examples:

$$\begin{array}{lll} \langle \exp \rangle & ::= & \langle \operatorname{const} \rangle & \langle \operatorname{stmt} \rangle & ::= & ; \\ & | & \langle \operatorname{var} \rangle & | & \langle \operatorname{var} \rangle = \langle \exp \rangle \; ; \\ & | & \langle \operatorname{exp} \rangle \; \langle \operatorname{op} \rangle \; \langle \operatorname{exp} \rangle & | & \operatorname{if} \left(\langle \operatorname{exp} \rangle \; \right) \langle \operatorname{stmt} \rangle \; \operatorname{else} \; \langle \operatorname{stmt} \rangle \\ & | & \langle \operatorname{op} \rangle & ::= & + | - | * | \; / & \langle \operatorname{seq} \rangle \; ::= \; \varepsilon \; | \; \langle \operatorname{stmt} \rangle \; \langle \operatorname{seq} \rangle \end{array}$$

Context-free languages (S. D. Bruda)

CS 310, Winter 2025 2 / 11

DERIVATIONS

- $G = (N, \Sigma, R, S)$
- A rewriting rule $A \rightarrow v' \in R$ is used to rewrite its left-hand side (A) into its right-hand side (v'):
 - $\exists x, y \in (N + \Sigma)^* : \exists A \in N : u = xAy, v = xv'y, A \rightarrow v' \in R$
- Rewriting can be chained (\Rightarrow^* , the reflexive and transitive closure of \Rightarrow = derivation)
 - $s \Rightarrow^* s'$ iff $s = s', s \Rightarrow s'$, or there exist strings s_1, s_2, \ldots, s_n such that $s \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \cdots \Rightarrow s_n \Rightarrow s'$
 - $\langle pal \rangle \Rightarrow 0 \langle pal \rangle 0 \Rightarrow 01 \langle pal \rangle 10 \Rightarrow 010 \langle pal \rangle 010 \Rightarrow 0101010$

$$\langle \mathsf{pal} \rangle \ ::= \ \varepsilon \ | \ \mathsf{0} \ | \ \mathsf{1} \ | \ \mathsf{0} \ \langle \mathsf{pal} \rangle \ \mathsf{0} \ | \ \mathsf{1} \ \langle \mathsf{pal} \rangle \ \mathsf{1}$$

- The language generated by grammar G: exactly all the terminal strings generated from $S: \mathcal{L}(G) = \{ w \in \Sigma^* : S \Rightarrow^* w \}$
 - Same language as defined by the respective recursive equation (and the approximation scheme shown earlier)

Parse Trees

- Definition:
 - **1** For every $a \in N + \Sigma$ the following is a parse tree (with yield a): a
 - 2 For every $A \to \varepsilon \in R$ the following is a parse tree (with yield ε):
 - If the following are parse trees (with yields $y_1, y_2, ..., y_n$, respectively):

and $A \rightarrow A_1 A_2 \dots A_n \in R$, then the following is a parse tree (with yield $y_1 y_2 \dots y_n$:

Yield: concatenation of leaves in inorder

Context-free languages (S. D. Bruda)

CS 310, Winter 2025 4 / 11

DERIVATIONS AND PARSE TREES

- Every derivation starting from some nonterminal has an associated parse tree (rooted at the starting nonterminal)
- Two derivations are similar iff only the order of rule application varies = can obtain one derivation from the other by repeatedly flipping consecutive rule applications
 - Two similar derivations have identical parse trees
 - Can use a "standard" derivation: leftmost $(A \Rightarrow^{\perp} w)$ or rightmost $(A \Rightarrow^{\perp} w)$

Theorem

The following statements are equivalent:

- there exists a parse tree with root A and yield w
- \bullet $A \Rightarrow^* w$
- $A \Rightarrow^{L} w$
- $\bullet \ A \Rightarrow^* W$
- Ambiguity of a grammar: there exists a string that has two derivations that are not similar (i.e., two derivations with different parse trees)
 - Can be inherent or not impossible to determine algorithmically

CONTEXT-FREE AND REGULAR LANGUAGES

- Regular grammar: $G = (N, \Sigma, R, S)$ with N, Σ, S as before, and $R \subseteq N \times (\varepsilon + \Sigma + \Sigma N)$
 - Special form of context-free grammar (only rules of form $A \to \varepsilon$, $A \to a$, and $A \rightarrow aB$ allowed)

Theorem

Exactly all the regular languages are generated by regular grammars

- Let $M = (K, \Sigma, \Delta, s, F)$ be some finite automaton
- We construct the grammar $G = (K, \Sigma, s, R)$ with

$$R = \{q \rightarrow ap : (q, a, p) \in \Delta\} + \{q \rightarrow \varepsilon : q \in F\}$$

Corollary

All regular languages are context-free

However, there are more context-free than regular languages

$$S \rightarrow aSb$$
 $S \rightarrow \varepsilon$

Context-free languages (S. D. Bruda)

CS 310, Winter 2025

PUSH-DOWN AUTOMATA

- Push-down automaton: finite automaton + "push-down store" (or stack)
- $M = (K, \Sigma, \Gamma, \Delta, s, F)$
 - K, Σ , s, F as before (for finite automata)
 - Γ is the stack alphabet

 - $\Delta \subseteq \{(K \times (\Sigma + \{\varepsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)\}$ Transition: $((q, a, \gamma), (q', \gamma'))$ with a the current input symbol (or ε), γ the old stack top, and γ' the replacement top
 - Graphical representation: q q q q q
- Acceptance: there exists a path (or run) that spells the input and ends in a final state and the stack is empty at the beginning as well as at the end of the path

PDA and Context-Free Languages

Theorem

Theorem: Push-down automata accept exactly all the context-free languages

• \supseteq : Given the grammar $G = (N, \Sigma, S, R)$ construct the push-down automaton $M = (K, \Sigma, \Gamma, \Delta, s, F)$ such that:

$$\Gamma = N + \Sigma
K = \{p, q\}
S = p
F = \{q\}
\Delta = \{((p, \varepsilon, \varepsilon), (q, S))\}
+ \{((q, \varepsilon, A), (q, \alpha)) : A \to \alpha \in R\}
+ \{((q, a, a), (q, \varepsilon)) : a \in \Sigma\}$$

$$\forall \alpha \in \Sigma : \alpha, \alpha \mapsto \varepsilon$$

$$\varepsilon, \varepsilon \mapsto S$$

$$\varphi$$

$$\forall A \to \alpha \in R : \varepsilon, A \mapsto \alpha$$

■ C: Proof left for a full course in formal languages

Context-free languages (S. D. Bruda)

CS 310, Winter 2025 8 / 11

CLOSURE PROPERTIES

- Consider two grammars with axioms S_1 and S_2 ; construct a grammar with axiom S
- Context-free languages are closed under
 - Union: Add rules $S \rightarrow S_1$ and $S \rightarrow S_2$
 - Concatenation: Add rule $S \rightarrow S_1 S_2$
 - Kleene star: Add rules $S \to \varepsilon$ and $S \to SS_1$
 - Intersection and complement:
 - If context-free languages are not closed under one of these then they are not closed under the other either

PUMPING CONTEXT-FREE LANGUAGES

- Let $\Phi(G)$ be the maximum fanout (branching factor) of any node in any parse tree constructed based on grammar G
- A parse tree of height h has a yield of size no more than $\Phi(G)^h$

Theorem (Pumping context-free languages)

Let $n = \Phi(G)^{|N|}$. For any $w \in \mathcal{L}(G)$ such that $|w| \ge n$ we can write w as uvxyz such that $vy \ne \varepsilon$, $|vxy| \le n$ and $uv^ixy^iz \in \mathcal{L}(G)$ for any $i \ge 0$

Context-free languages (S. D. Bruda

CS 310, Winter 2025 10 / 11

Pumping Context-Free Languages (cont'd)

- Some interesting non-context-free languages:
 - $\{a^nb^nc^n : n \ge 0\}$
 - $\{a^n : n \text{ is prime}\}$
 - $\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$

Corollary

Context-free languages are not closed under intersection and complement

- Indeed, $\{a^nb^nc^n: n \ge 0\} = \{a^nb^nc^m: n, m \ge 0\} \cap \{a^mb^nc^n: n, m \ge 0\}$
- That $\{a^nb^nc^m:n,m\geq 0\}$ is context free can be shown by constructing a grammar/automaton or by using closure properties
- Tricky language: $\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$ satisfies the pumping lemma yet is not context-free