
Specifying algorithms

Stefan D. Bruda

CS 310, Winter 2025

SPECIFICATIONS

Specifications describe transformations from input values to output
values

A specification consists of the following parts: input, output and environment
in which the specification/program will work (constraints on variables)

The formalization of a specification consists of the following:
Declarative interface = static properties of the identifiers, including constants
Pre-condition: assertion on input values that the program will be given
Post-condition: assertion on output values, possibly in relation to input
values

We use logical formulae (assertions) which will not be evaluated during
execution, but will hold true if evaluated

ASSERT(P)

S

ASSERT(Q)

or for short
P {S} Q

A specification is a contract: if the pre-conditions hold
then the post-conditions must hold, otherwise all the
bets are off (the specification is vacuously true)

Total correctness: if P holds when S starts then S

terminates in a state that satisfies Q

Partial correctness: if P holds when S starts then S will
not terminate normally in a state that does not satisfy Q

Specifying algorithms (S. D. Bruda) CS 310, Winter 2025 1 / 5

DECLARATIVE INTERFACE

Running example: write a code fragment that tests for the presence of a
given value x in a given array A[]

The range of subscripts for A[]: 0. . . n, for a given n<=max

The type of x (and values in A[]): some type that can be compared with ==

How will the result be given: by setting the boolean variable present

Can we assume that the array is sorted: no
Can we have duplicates in A[]: yes, but duplicates do not matter
What happens if A[] is empty: set the variable present to false (not an
error)
What cannot be modified: A[0..n] and x

Declarative interface:
const int max; /* maximum number of entries */

typename Entry; /* type of entries, use == to compare */

const int n; /* actual number of entries */

const Entry x; /* search target */

Entry A[max]; /* A[0..n] are the entries to search */

bool present; /* search result */

Specifying algorithms (S. D. Bruda) CS 310, Winter 2025 2 / 5

ASSERTIONS

Assertions are boolean formulae
Essentially C expressions of type bool with some extensions and
shortcuts:

Logical implication => and iff <=>
If P=>Q is true then P is said to be stronger than Q (and Q weaker than P)

Existential and universal quantifiers: ForAll(I).P and Exists(I).P
(alternative notation: ∀I.P and ∃I.P)

The identifier I is said to be bound
Natural abbreviations including:

a<=i<b instead of a<=i && i<b

ForAll (i=a; i<b) P instead of ForAll (int i) a<=i<b => P
Exists (i=a; i<b) P instead of Exists (int i) a<=i<b => P
x in A[a:b-1] instead of Exists (i=a; i<b) x == A[i]

x < A[a:b-1] instead of ForAll (i=a; i<b) x < A[i], etc.

Assertions are provided as comments (they are not evaluated, but is
expected that they would be true if evaluated):

#define ASSERT(P)

Specifying algorithms (S. D. Bruda) CS 310, Winter 2025 3 / 5

PRE- AND POST-CONDITIONS

A post-condition is expected to be true immediately after the execution of
the preceding code

Example: present <=> Exists (k=0; k<n) A[k] == x

A pre-condition must be true immediately before the code is executed
Example: 0 <= n <= max

Some times we need to specify a condition between the initial and the
final content of a variable

If so we conceptually define a copy of the variable and use that:
Entry A[max]; /* A[0..n] are the entries to search */

/* const Entry A0[max]; */

Strengthen the pre-condition to 0 <= n <= max && A == A0

A possible post-condition is then
(present <=> Exists (k=0; k<n) A[k] == x) &&

(ForAll (i=0; i<n) A[i] == A0[i])

Specifying algorithms (S. D. Bruda) CS 310, Winter 2025 4 / 5

ARRAY SEARCH

const int max; /* maximum number of entries */

typename Entry; /* type of entries, use == to compare */

const int n; /* actual number of entries */

const Entry x; /* search target */

Entry A[max]; /* A[0..n] are the entries to search */

bool present; /* search result */

int main () {

ASSERT(0 <= n <= max && A == A0)

int i;

present = false;

for (i=0; i<n; i++) {

if (A[i] == x) present = true;

}

ASSERT((present <=> Exists (k=0; k<n) A[k] == x) &&

(ForAll (i=0; i<n) A[i] == A0[i]))

}
Specifying algorithms (S. D. Bruda) CS 310, Winter 2025 5 / 5

