
Techniques for algorithm verification

Stefan D. Bruda

CS 310, Winter 2025

CORRECTNESS STATEMENTS

A block of code with its assertions is a logical formula called correctness
statement (aka Hoare triple)

ASSERT(P) C ASSERT(Q)

P {C} Q

We prove the validity of correctness statements using a proof system of
axioms and inference rules

One of many variants of Hoare logic
Assignment statement needs an axiom:

Motivating example: n == n0 { n = n - 1; } n == n0 - 1
First axiom attempt: V == I {V = E ; } V == [E](V 7→ I)

Supplementary condition: V is distinct from I
Only works for pre-conditions of form V == I; no good for example for
n > 0 { n = n - 1; } n >= 0

It turns out that it is better to reason backward
Assignment axiom (C. A. R. Hoare):

[Q](V 7→ E) {V = E ; } Q

Example: n-1 >= 0 { n = n - 1; } n >= 0

Example: x - y >= 0 { x = x - y; } x >= 0

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 1 / 10

SUBSTITUTIONS

[Q](I 7→ E) = like Q except that all the occurrences of I are replaced by E
Use parentheses as necessary

[2*i == j](i7→i-1) is 2*(i-1) == j rather than 2*i-1 == j

Only free occurrences of I are replaced
A variable introduced by a quantifier is bound, all other variables are free

present <=> Exists (k=0; k<n) A[k] == x:
k is bound; present, A, and x are free

[ForAll (i=0; i<n) A[i]>0](i7→i+1)

→ ForAll (i=0; i<n) A[i]>0

[ForAll (i=0; i<n) A[i]>0](n7→n+1)

→ ForAll (i=0; i<n+1) A[i]>0

[i>0 => Exists(i=0; i<n) A[i]>0](i7→i+1)

→ (i+1)>0 => Exists(i=0; i<n) A[i]>0

Rename bound identifiers if substitution I 7→ E causes free identifiers in
E to become bound
[ForAll (i=0; i<n) A[i] > j](j7→i-1)

̸→ [ForAll (i=0; i<n) A[i] > i-1]

→ [ForAll (k=0; k<n) A[k] > i-1]

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 2 / 10

PROOFS AND PROOF TABLEAUX

A formal proof is a sequence of logical statements
A statement is either an axiom or the conclusion of an inference rule

Difficult to read when it comes to code, so a proof tableau is often used
instead

Consist of program code, pre- and post-conditions, and all the intermediate
assertions
Stating non-obvious mathematical facts: comments or the following macro:
#define FACT (P)

Must be able to reconstitute the formal proof out of a tableau

Formal proof Tableau

1. n-1>0 { n=n-1; } n>0 (assignment)
2. n>1 => n-1>0 (math)
3. n>1 { n=n-1; } n>0 (strengthen)
4. n>0 => n>=1 (math)
5. n>1 { n=n-1; } n>=1 (weakening)

ASSERT(n>1) /* 3 */

FACT(n>1 => n-1>0) /* 2 */

ASSERT(n-1>0) /* 1 */

n = n-1;

ASSERT(n>0)

FACT(n>0 => n>=1) /* 4 */

ASSERT(n>=1) /* 5 */

(Note: in practice trivial facts are omitted)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 3 / 10

INFERENCE RULES AND PROOF TABLEAUX

Pre-condition strengthening and post-condition
weakening

P′ {C} Q P ⇒ P′

P {C} Q
P {C} Q Q ⇒ Q′

P {C} Q′

Sequencing

P {C0} Q Q {C1} R
P {C0 C1} R

P {C0} Q Q′ {C1} R Q ⇒ Q′

P {C0 C1} R

If statements

P && B {C0} Q P && !B {C1} Q
P {if (B) C0 else C1} Q

Else-less if statements are best represented in
tableaux using an empty else branch (empty C1)

Sequencing
ASSERT(P)

C0
ASSERT(Q)

C1
ASSERT(R)

If statement
ASSERT(P)

if (B)

ASSERT(P && B)

C0
ASSERT(Q)

else

ASSERT(P && !B)

C1
ASSERT(Q)

ASSERT(Q)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 4 / 10

WHILE LOOPS

A single assertion called loop invariant will usually
do

I && B {C} I
I {while (B) C} I && !B

The invariant I must be preserved by the loop body
The invariant is also a pre-condition
The invariant I as well as !B must be both true
after the execution of the loop no matter how many
times the loop executes

Important consideration: loop termination
The loop invariant says nothing about termination
Sometimes a suitable pre-condition ensures
termination
More generally, a variant can be shown to exist
(tricky, no algorithmic method)

Must be positive immediately before the loop
Must decrease monotonically and continuously at
each iteration (cannot skip values!)
Must ensure loop termination when it reaches 0

Tableau:

ASSERT(I)

while (B)

ASSERT(I && B)

C

ASSERT(I)

ASSERT(I && !B)

Shortcut:

while (B) INVAR(I)

C

where:

#define INVAR(I)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 5 / 10

LOCAL VARIABLES

A local variable should not be mentioned in the interface, including the
pre- and post-conditions that surround the block that defines it:

P {C} Q
P {T I; C} Q

T is a type
The identifier I cannot be free in P or Q
Essentially, a local variable does not affect reasoning about the program,
provided that the relevant pre- and post-conditions can be expressed without
referring to that variable

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 6 / 10

FOR LOOPS

for (A0; B; A1) C is equivalent with A0; while(B) {C A1; }.
The following proof tableau shows this:

ASSERT(P)

A0
ASSERT(I)

while(B) {

ASSERT(I && B)

C

A1
ASSERT(I)

}

ASSERT(I && !B)

ASSERT(Q)

The pre-condition P must ensure that I holds
immediately after the execution of A0

I must be an invariant of C A1;

I and !B must together imply the desired
post-condition Q

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 7 / 10

ARRAY COMPONENT ASSIGNMENT

The usual assignment correctness statement will not work for assigning
to array components
We treat the result of the assignment A[I]=E as the new array (A|I 7→ E)
such that

(A|I 7→ E)[I′] = E whenever I′ = I

(A|I 7→ E)[I′] = A[I′] whenever I′ ̸= I

The assignment rule becomes:

[Q](A 7→ A′) {A[I] = E; } Q

where A′ is (A|I 7→ E)

That the subscript I is in the range allowed for A must be verified separately

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 8 / 10

DO-WHILE LOOPS

do C while (B); is equivalent to: {C while (B) C}. Therefore:

P {C} I I && B {C} I
P {do C while(B);} I && !B

ASSERT(P)

C

ASSERT(I)

while (B)

ASSERT(I && B)

C

ASSERT(I)

ASSERT(I && !B)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 9 / 10

COMBINING CORRECTNESS STATEMENTS

Potentially useful when we prove two post-conditions:

P {C} Q1 P {C} Q2

P {C} Q1 && Q2

Potentially useful when we prove a post-condition in two different
circumstances:

P1 {C} Q P2 {C} Q
P1 || P2 {C} Q

These are also useful in determining the weakest precondition and
strongest postcondition

Fundamental concepts for the automation of Hoare logic proofs

Combinations (but only using the same operator) are also sound:

P1 {C} Q1 P2 {C} Q2

P1 || P2 {C} Q1 || Q2

P1 {C} Q1 P2 {C} Q2

P1 && P2 {C} Q1 && Q2

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 10 / 10

