Techniques for algorithm verification

Stefan D. Bruda

CS 310, Winter 2025

CORRECTNESS STATEMENTS

 A block of code with its assertions is a logical formula called correctness statement (aka Hoare triple)

- We prove the validity of correctness statements using a proof system of axioms and inference rules
 - One of many variants of Hoare logic
- Assignment statement needs an axiom:
 - Motivating example: $n == n0 \{ n = n 1; \} n == n0 1$
 - First axiom attempt: $V == I \quad \{V = E_i\} \quad V == [E](V \mapsto I)$
 - Supplementary condition: V is distinct from I
 - Only works for pre-conditions of form V == I; no good for example for $n > 0 \{ n = n - 1; \} n >= 0$
 - It turns out that it is better to reason backward
 - Assignment axiom (C. A. R. Hoare):

$$[Q](V \mapsto E) \quad \{V = E;\} \quad Q$$

- Example: $n-1 >= 0 \{ n = n 1; \} n >= 0$
- Example: $x y >= 0 \{ x = x y; \} x >= 0$

- $[Q](I \mapsto E)$ = like Q except that all the occurrences of I are replaced by E
- Use parentheses as necessary

```
• [2*i == j](i \mapsto i-1) is 2*(i-1) == j rather than 2*i-1 == j
```

- Only free occurrences of I are replaced
 - A variable introduced by a quantifier is bound, all other variables are free

```
present <=> Exists (k=0; k<n) A[k] == x:</pre>
    k is bound; present, A, and x are free
[ForAll (i=0; i<n) A[i]>0] (i\mapstoi+1)
                        \rightarrow ForAll (i=0; i<n) A[i]>0
[ForAll (i=0; i<n) A[i]>0] (n\mapsto n+1)
                           ForAll (i=0; i<n+1) A[i]>0
[i>0 \Rightarrow Exists(i=0; i< n) A[i]>0](i\mapsto i+1)
                             (i+1)>0 => Exists(i=0; i<n) A[i]>0
```

• Rename bound identifiers if substitution $I \mapsto E$ causes free identifiers in E to become bound

```
[ForAll (i=0; i<n) A[i] > j](j \mapsto i-1)
                       \rightarrow [ForAll (i=0; i<n) A[i] > i-1]
                       \rightarrow [ForAll (k=0; k<n) A[k] > i-1]
```

Techniques for algorithm verification (S. D. Bruda)

CS 310, Winter 2025 2 / 10

PROOFS AND PROOF TABLEAUX

- A formal proof is a sequence of logical statements
 - A statement is either an axiom or the conclusion of an inference rule
- Difficult to read when it comes to code, so a proof tableau is often used instead
 - Consist of program code, pre- and post-conditions, and all the intermediate
 - Stating non-obvious mathematical facts: comments or the following macro: #define FACT (P)
 - Must be able to reconstitute the formal proof out of a tableau

Formal proof

Tableau

ASSERT(
$$n>1$$
) /* 3 */

1. $n-1>0$ { $n=n-1$; } $n>0$ (assignment) FACT($n>1$ => $n-1>0$) /* 2 */

2. $n>1$ => $n-1>0$ (math) ASSERT($n-1>0$) /* 1 */

3. $n>1$ { $n=n-1$; } $n>0$ (strengthen) $n = n-1$;

4. $n>0$ => $n>=1$ (math) ASSERT($n>0$)

5. $n>1$ { $n=n-1$; } $n>=1$ (weakening) FACT($n>0$ => $n>=1$) /* 4 */

ASSERT($n>1$) /* 5 */

(Note: in practice trivial facts are omitted)

Inference Rules and Proof Tableaux

 Pre-condition strengthening and post-condition weakening

$$\frac{P' \{C\} Q \qquad P \Rightarrow P'}{P \{C\} Q} \qquad \frac{P \{C\} Q \qquad Q \Rightarrow Q'}{P \{C\} Q'}$$

Sequencing

$$\frac{P\{C_{0}\} Q \quad Q\{C_{1}\} R}{P\{C_{0} \mid C_{1}\} R}$$

$$\frac{P\{C_{0}\} Q \quad Q'\{C_{1}\} R \quad Q \Rightarrow Q'}{P\{C_{0} \mid C_{1}\} R}$$

If statements

$$P \&\& B \{C_0\} Q$$
 $P \&\& !B \{C_1\} Q$
 $P \{if (B) C_0 else C_1\} Q$

 Else-less if statements are best represented in tableaux using an empty else branch (empty C₁) Sequencing

ASSERT(P) C_0 ASSERT(Q) C_1 ASSERT(R)

If statement

Techniques for algorithm verification (S. D. Bruda)

CS 310, Winter 2025 4 / 10

WHILE LOOPS

 A single assertion called loop invariant will usually do

- The invariant I must be preserved by the loop body
- The invariant is also a pre-condition
- The invariant I as well as !B must be both true after the execution of the loop no matter how many times the loop executes
- Important consideration: loop termination
 - The loop invariant says nothing about termination
 - Sometimes a suitable pre-condition ensures termination
 - More generally, a variant can be shown to exist (tricky, no algorithmic method)
 - Must be positive immediately before the loop
 - Must decrease monotonically and continuously at each iteration (cannot skip values!)
 - Must ensure loop termination when it reaches 0

Tableau:

ASSERT(I) while (B) ASSERT(I && B) ASSERT(I) ASSERT(I && !B)

Shortcut:

while (B) INVAR(I) C

where:

#define INVAR(I)

 A local variable should not be mentioned in the interface, including the pre- and post-conditions that surround the block that defines it:

$$\frac{P\left\{C\right\}\,Q}{P\left\{T\;I;\;C\right\}\,Q}$$

- T is a type
- The identifier I cannot be free in P or Q
- Essentially, a local variable does not affect reasoning about the program, provided that the relevant pre- and post-conditions can be expressed without referring to that variable

Techniques for algorithm verification (S. D. Bruda)

CS 310, Winter 2025 6 / 10

For Loops

- for (A₀; B; A₁) C is equivalent with A₀; while(B) {C A₁; }.
- The following proof tableau shows this:

```
ASSERT(P)
A_0
ASSERT(I)
while(B) {
   ASSERT(I && B)
   C
   A_1
   ASSERT(I)
}
ASSERT(I && !B)
ASSERT(Q)
```

- The pre-condition P must ensure that I holds immediately after the execution of Ao
- I must be an invariant of C A₁;
- I and !B must together imply the desired post-condition Q

ARRAY COMPONENT ASSIGNMENT

- The usual assignment correctness statement will not work for assigning to array components
- We treat the result of the assignment A[I]=E as the new array $(A|I \mapsto E)$ such that

```
• (A|I \mapsto E)[I'] = E whenever I' = I
• (A|I \mapsto E)[I'] = A[I'] whenever I' \neq I
```

• The assignment rule becomes:

$$[Q](A \mapsto A') \{A[I] = E;\} Q$$

```
where A' is (A|I \mapsto E)
```

• That the subscript I is in the range allowed for A must be verified separately

Techniques for algorithm verification (S. D. Bruda)

CS 310, Winter 2025 8 / 10

DO-WHILE LOOPS

• do C while (B); is equivalent to: {C while (B) C}. Therefore:

```
ASSERT(P)
C
ASSERT(I)
while (B)
    ASSERT(I && B)
    ASSERT(I)
ASSERT(I && !B)
```

COMBINING CORRECTNESS STATEMENTS

Potentially useful when we prove two post-conditions:

$$\frac{P\{C\} Q_1 \qquad P\{C\} Q_2}{P\{C\} Q_1 \&\& Q_2}$$

 Potentially useful when we prove a post-condition in two different circumstances:

$$\frac{P_1 \{C\} Q \qquad P_2 \{C\} Q}{P_1 || P_2 \{C\} Q}$$

- These are also useful in determining the weakest precondition and strongest postcondition
 - Fundamental concepts for the automation of Hoare logic proofs
- Combinations (but only using the same operator) are also sound:

$$\frac{P_1 \{C\} Q_1 \qquad P_2 \{C\} Q_2}{P_1 \parallel P_2 \{C\} Q_1 \parallel Q_2} \qquad \frac{P_1 \{C\} Q_1 \qquad P_2 \{C\} Q_2}{P_1 \&\& P_2 \{C\} Q_1 \&\& Q_2}$$

$$P_1 \{C\} Q_1 \qquad P_2 \{C\} Q_2$$
 $P_1 \&\& P_2 \{C\} Q_1 \&\& Q_2$