Techniques for algorithm verification

Stefan D. Bruda

CS 310, Winter 2025

CORRECTNESS STATEMENTS

@ A block of code with its assertions is a logical formula called correctness
statement (aka Hoare triple)
ASSERT(P) C ASSERT(Q)
P {C} Q
@ We prove the validity of correctness statements using a proof system of
axioms and inference rules
@ One of many variants of Hoare logic
@ Assignment statement needs an axiom:
o Motivatingexample: n==n0 {n=n-1; } n==n0 -1
o Firstaxiom attempt: V ==/ {V=E;} V==I[E|(V~)

@ Supplementary condition: V is distinct from /
@ Only works for pre-conditions of form V == [; no good for example for

n>0{n=n-1; }n>0
e It turns out that it is better to reason backward
e Assignment axiom (C. A. R. Hoare):

[QI(V—E) {V=E} Q

@ Example: n-1 >= 0 { n =
@ Example: x -y >0 { x

CS 310, Winter 2025 1/10

Techniques for algorithm verification (S. D. Bruda)

SUBSTITUTIONS

@ [Q|(/+— E) = like Q except that all the occurrences of / are replaced by E
@ Use parentheses as necessary
o [2xi == jl(i—i-1) is 2*(i-1) == j ratherthan 2*i-1 == j
@ Only free occurrences of / are replaced
e A variable introduced by a quantifier is bound, all other variables are free
@ present <=> Exists (k=0; k<n) A[k] ==
k is bound; present, A, and x are free
[ForAll (i=0; i<n) A[i]>0] (ir>i+1)
— ForAll (i=0; i<n) A[i]>0
[ForAll (i=0; i<n) A[i]>0] (n—~n+1)
— ForAll (i=0; i<n+1) A[i]>0
[i>0 => Exists(i=0; i<n) A[i]>0] (i——>i+1)
— (i+1)>0 => Exists(i=0; i<n) A[i]>O0
@ Rename bound identifiers if substitution / — E causes free identifiers in
E to become bound
[ForAll (i=0; i<n) A[i] > jl(j—i-1)
#4 [ForAll (i=0; i<n) A[i] > i-1]
— [ForAll (k=0; k<n) A[k] > i-1]

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 2/10

PROOFS AND PROOF TABLEAUX

@ A formal proof is a sequence of logical statements
e A statement is either an axiom or the conclusion of an inference rule

@ Difficult to read when it comes to code, so a proof tableau is often used
instead

e Consist of program code, pre- and post-conditions, and all the intermediate
assertions
e Stating non-obvious mathematical facts: comments or the following macro:

#define FACT (P)
e Must be able to reconstitute the formal proof out of a tableau

Formal proof Tableau
ASSERT (n>1) /* 3 x/
1. n-1>0 { n=n-1; } n>0 (assignment) FACT(n>1 => n-1>0) /* 2 */
2. n>1 => n-1>0 (math) ASSERT (n-1>0) /*x 1 x/
3. n>1 { n=n-1; } n>0 (strengthen) n = n-1;
4. n>0 => n>=1 (math) ASSERT (n>0)
5. n>1 { n=n-1; } n>=1 (weakening) FACT(n>0 => n>=1) /% 4 x/
ASSERT (n>=1) /* 5 %/

(Note: in practice trivial facts are omitted)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 3/10

INFERENCE RULES AND PROOF TABLEAUX

@ Pre-condition strengthening and post-condition

weakening @ Sequencing
ASSERT (P)
P {C}Q P=F P{C} Q Q= Q Co
P{C}Q Pi{Ct@ ASSERT(Q)
@ Sequencing Cy
ASSERT (R)
P{C}Q Q{Ci}R @ If statement
P{Co Ci} R ASSERT (P)
if (B)
P{Co} Q Q {Ci}R Q= Q
ASSERT(P && B)
P{Cy Ci} R Co
@ If statements ASSERT(Q)
else
P {if (B) Cp else C1} Q C,
ASSERT(Q)
o Else-less if statements are best represented in ASSERT(Q)

tableaux using an empty else branch (empty Cy)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 4/10

WHILE LOOPS

@ A single assertion called loop invariant will usually

do
1&& B{C} | Tableau:
| {while (B) C} | && !B

ASSERT(I)
o The invariant / must be preserved by the loop body ~ ¥Rile (B)
e The invariant is also a pre-condition ASSERT(I && B)
e The invariant / as well as ! B must be both true C
ASSERT(I)

after the execution of the loop no matter how many
times the loop executes

@ Important consideration: loop termination Shortcut:

e The loop invariant says nothing about termination
e Sometimes a suitable pre-condition ensures

termination
e More generally, a variant can be shown to exist
(tricky, no algorithmic method)

@ Must be positive immediately before the loop #define INVAR(I)
@ Must decrease monotonically and continuously at

each iteration (cannot skip values!)
@ Must ensure loop termination when it reaches 0

ASSERT(I && !B)

while (B) INVAR(I)
C

where:

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 5/10

LOCAL VARIABLES

@ A local variable should not be mentioned in the interface, including the
pre- and post-conditions that surround the block that defines it:

P{C}Q
P{TI, ClQ

o Tisatype

e The identifier / cannot be free in P or Q

o Essentially, a local variable does not affect reasoning about the program,
provided that the relevant pre- and post-conditions can be expressed without
referring to that variable

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 6/10

FOR LOOPS

@ for (Ay; B; Ay) Cis equivalent with Ay; while(B) {C A;; }.
@ The following proof tableau shows this:

ASSERT (P
(P) e The pre-condition P must ensure that I holds
Ay .))
immediately after the execution of A,
ASSERT(I)
while(B) { e I must be an invariant of C A;;
ASSERT(I && B)
C e I and !B must together imply the desired
Ay post-condition Q
ASSERT(I)
}
ASSERT(I && !'B)
ASSERT(Q)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 7/10

ARRAY COMPONENT ASSIGNMENT

@ The usual assignment correctness statement will not work for assigning
to array components

@ We treat the result of the assignment A[I]=E as the new array (A|I — E)
such that

o (A|]I — E)[I'] = E wheneverI' =1
o (AT — E)[I'] = A[1'] whenever I" # I

@ The assignment rule becomes:

[Ql(a — A") {A[T] =E; } Q

where A’ is (A|I — E)
e That the subscript I is in the range allowed for A must be verified separately

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 8/10

DO-WHILE LOOPS

@ do Cwhile (B); is equivalent to: {C while (B) C}. Therefore:

P{C} I 1&& B{C} |
P {do C while(B);} I && 'B

ASSERT (P)
C
ASSERT(I)
while (B)
ASSERT(I && B)
C
ASSERT(I)
ASSERT(I && !'B)

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 9/10

COMBINING CORRECTNESS STATEMENTS

@ Potentially useful when we prove two post-conditions:

P{CYQs P{C}Q
P{Cl Qi && Qs

@ Potentially useful when we prove a post-condition in two different

circumstances:
Py {C} Q P> {C} Q

Pl P {C} Q

@ These are also useful in determining the weakest precondition and
strongest postcondition

e Fundamental concepts for the automation of Hoare logic proofs
@ Combinations (but only using the same operator) are also sound:

Py {C} Q1 P {C} Qe P, {C}Qy P {C}Q
Pi || P2 {C} Q1 || Qe Py && P> {C} Q && @

Techniques for algorithm verification (S. D. Bruda) CS 310, Winter 2025 10/10

