
CS 316: Constraint satisfaction problems

Stefan D. Bruda

Winter 2023



CONSTRAINT SATISFACTION PROBLEMS

Standard search problem: the state is anything that supports goal test,
comparison, successor
CSP: the state is defined by variables Vi with values from domains Di

The goal test is a set of constraints, which specifies allowable combinations
of values for subsets of variables. A state is a set of variable bindings.

Variables { Shoes,Pants,Shirt }
Domains { {Sandals,Runners}, {Jeans,Blue,Grey}, {Green,White} }

Constraints { (Shoes = Sandals,Pants = Grey),

(Shoes = Runners,Pants = Jeans),

(Shoes = Sandals,Shirt = Green),

(Shoes = Runners,Shirt = White),

(Pants = Grey ,Shirt = Green),

(Pants = Jeans,Shirt = White),

(Pants = Blue,Shirt = White) }

This is actually an example of binary CSP

CS 316 (S. D. Bruda) Winter 2023 1 / 8



EXAMPLE: MAP COLOURING

Colour a map so that no adjacent countries have the same colour.

Variables: Countries Ci

Domains: {Red ,Green,Blue}
Constraints: C1 ̸= C2, C1 ̸= C3, C3 ̸= C5, . . .

CS 316 (S. D. Bruda) Winter 2023 2 / 8



REAL-WORLD CSP

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

CS 316 (S. D. Bruda) Winter 2023 3 / 8



SOLVING CSP BY STANDARD SEARCH METHODS

States are defined by the variables bound so far.
Initial state All variables unbound.
Operators Bind one variable
Goal test All variables assigned, no constraints violated

Disadvantages?

CS 316 (S. D. Bruda) Winter 2023 4 / 8



IMPROVING THE CSP ALGORITHM

Order of assignment is irrelevant (many paths are equivalent)
Further bindings cannot correct an already violated constraint
We can use depth-first search, but

Fix the order of assignment
Check for constraint violations

at the SUCCESSORS level, or immediately before expanding the state.

function CSP-SEARCH() returns a solution, or failure

nodes←MAKE-QUEUE(MAKE-NODE(INITIAL-STATE))
repeat

if nodes is empty then return failure
node←REMOVE-FRONT(nodes)
if GOAL-TEST(node) then return node
unless VIOLATES-CONSTRAINTS(node) do

nodes←APPEND(SUCCESSORS(node), nodes)
forever

We do not need the queue actually (why?)

CS 316 (S. D. Bruda) Winter 2023 5 / 8



BACKTRACKING

We fix the order of assignment, and we check for constraint violations
The resulting algorithm is called backtracking, the basic uninformed
algorithm for CSP. Can solve n-queens for n ≈ 15

function BACKTRACKING( state, variables, domains) returns a solution,
or failure

var← FIRST(variables)
domain← FIRST(domains)
foreach val in domain do

unless VIOLATES-CONSTRAINTS(ADD((var,val),state)) do
if no more variables then return state
BACKTRACKING(ADD((var, val), state),

REST(variables), REST(domains))
end
return failure

CS 316 (S. D. Bruda) Winter 2023 6 / 8



BACKTRACKING IMPROVEMENTS

Variant: forward checking, looks ahead and erases from the domains of
all the variables those values that cannot be assigned without violating
constraints

Forward checking is a particular case of arc consistency working on the
graph generates by the constraints
Arc consistency can be applied on the initial graph of constraints before
performing the backtracking search

CS 316 (S. D. Bruda) Winter 2023 7 / 8



HEURISTICS FOR CSP

We can make more intelligent decisions on
which value to choose for each variable
which variable to assign next

Given C1 = Red and C2 = Green, C3 =?

C3 = Green, the least constraining value

Given C1 = Red , C2 = Green, what next?

Choose C5, the most constrained variable

Can solve n-queens for n ≈ 1000

CS 316 (S. D. Bruda) Winter 2023 8 / 8



HEURISTICS FOR CSP

We can make more intelligent decisions on
which value to choose for each variable
which variable to assign next

Given C1 = Red and C2 = Green, C3 =?

C3 = Green, the least constraining value

Given C1 = Red , C2 = Green, what next?
Choose C5, the most constrained variable

Can solve n-queens for n ≈ 1000

CS 316 (S. D. Bruda) Winter 2023 8 / 8


