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SYNTAX OF FOL

@ Basic ingredients:

o Constants KingJohn, 2, UB, ...
o Predicates Brother, >, ...
e Functions Sqrt, LefiLegOf, ...
o Variables X, y,a b,...
o Connectives AV - =&
e Equality =
o Quantifiers v 3
@ Complex constructs:
@ Atomic sentence predicate(termy, . .., termp) or termy = termy
o Term function(termy, . .., termy,) or constant or variable

Brother(KingJohn, RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

o Complex sentences are made from atomic sentences using connectives
—\S, Si A Sg, S v 32, S = 82, S S

Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
>(1,2) v <(1,2) >(1,2) A —=>(1,2)
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SEMANTICS OF FOL

@ Sentences are true with respect to a model and an interpretation

e The model contains objects and relations among them
@ Aninterpretation is a triple / = (D, ¢, 7), where
@ D (the domain) is a nonempty set; elements of D are individuals
@ ¢ is a mapping that assigns to each constant an element of D
@  is a mapping that assigns to each predicate with n arguments a function
p: D" — {True, False} and to each function of k arguments a function
f:Dk D
@ The interpretation specifies referents for
constant symbols ~ —  objects (individuals)
predicate symbols —  relations
function symbols ~ —  functional relations

@ An atomic sentence predicate(term, . .., termy) is true iff the objects
referred to by termy, . .., termy, are in the relation referred to by predicate
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SEMANTICS OF FOL: EXAMPLE

€S 316 (S. D. Bruda)

eblects % % NV

relations: sets of tuples of objects

(G0, 2,

functional relations: all tuples of objects + "value" object

(G0, CL0,
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UNIVERSAL QUANTIFICATION

V (variable) (sentence)

@ Everyone at Bishop’s is smart: V x Attends(x, Bishops) = Smart(x)
Vx P is equivalent to the conjunction of instantiations of P

Attends(KingJohn, Bishops) = Smart(KingJohn)
A Attends(Richard, Bishops) = Smart(Richard)
A Attends(Bishops, Bishops) = Smart(Bishops)
AL
@ Do not use A as the main connective with V:

V x Attends(x, Bishops) A Smart(x)
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UNIVERSAL QUANTIFICATION

V (variable) (sentence)

@ Everyone at Bishop’s is smart: V x Attends(x, Bishops) = Smart(x)
Vx P is equivalent to the conjunction of instantiations of P

Attends(KingJohn, Bishops) = Smart(KingJohn)
A Attends(Richard, Bishops) = Smart(Richard)
A Attends(Bishops, Bishops) = Smart(Bishops)
AL
@ Do not use A as the main connective with V:

V x Attends(x, Bishops) A Smart(x)

“Everyone attends Bishop’s and everyone is smart”!
Typically, = is used instead

CS 316 (S. D. Bruda) Winter 2023

4/21



EXISTENTIAL QUANTIFICATION

3 (variable) (sentence)

@ Someone at Queen’s is smart: 3x Attends(x, Queens) A Smart(x)
Ix P is equivalent to the disjunction of instantiations of P

Attends(KingJohn, Queens) A Smart(KingJohn)
V  Attends(Richard, Queens) A Smart(Richard)
Vv Attends(Queens, Queens) A Smart(Queens)
%

@ Do not use = as the main connective with 3:

Jx Attends(x, Queens) = Smart(x)
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EXISTENTIAL QUANTIFICATION

3 (variable) (sentence)

@ Someone at Queen’s is smart: 3x Attends(x, Queens) A Smart(x)
3x P is equivalent to the disjunction of instantiations of P

Attends(KingJohn, Queens) A Smart(KingJohn)
V  Attends(Richard, Queens) A Smart(Richard)
Vv Attends(Queens, Queens) A Smart(Queens)
%

@ Do not use = as the main connective with 3:
Jx Attends(x, Queens) = Smart(x)

is true if there is anyone who is not at Queen’s!
Typically, A is used instead
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PROPERTIES OF QUANTIFIERS

@ Vx Vy isthesameasVy Vx
@ dx Jy isthesameasdy Ix

@ dx Vy isnotthesameasVy Ix

e dx Vy Loves(x,y)
e Vy Jx Loves(x,y)

@ Quantifier duality: each can be expressed using the other
e Vx P(x)isequivalentto —=(3x —P(x))
e Jdx P(x)is equivalentto —(Vx —P(x))

Vx Likes(x, lceCream) = —(3x —Likes(x, lceCream))
(

Ix Likes(x,Broccoli) = —(Vx -Likes(x,Broccoli))
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PROPERTIES OF QUANTIFIERS

@ Vx Vy isthesameasVy Vx
@ dx Jy isthesameasdy Ix
@ dx Vy isnotthesameasVy Ix

e dx Vy Loves(x,y) (“There is a person who loves everyone in the world”)
e Vy Ix Loves(x,y) (“Everyone in the world is loved by at least one person”)

@ Quantifier duality: each can be expressed using the other
e Vx P(x)isequivalentto —=(3x —P(x))
e Jdx P(x)is equivalentto —(Vx —P(x))
Vx Likes(x, lceCream) = —(3x —Likes(x, lceCream))
Ix Likes(x,Broccoli) = —(Vx -Likes(x,Broccoli))
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FOL AS A SECOND LANGUAGE

@ Brothers are siblings.

@ All animals eat custard.

@ Everyone loves Arcand’s movies.
@ Jim likes Fred’s stuff.

@ A first cousin is a child of a parent’s sibling
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@ Brothers are siblings.

Vx Yy Brother(x,y) < Sibling(x,y)
@ All animals eat custard.
@ Everyone loves Arcand’s movies.

@ Jim likes Fred’s stuff.

@ A first cousin is a child of a parent’s sibling
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FOL AS A SECOND LANGUAGE

@ Brothers are siblings.
Vx Yy Brother(x,y) < Sibling(x,y)

@ All animals eat custard.
vV x Animal(x) = Eats(x, Custard)
@ Everyone loves Arcand’s movies.

@ Jim likes Fred’s stuff.

@ A first cousin is a child of a parent’s sibling
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FOL AS A SECOND LANGUAGE

@ Brothers are siblings.
Vx Yy Brother(x,y) < Sibling(x,y)

@ All animals eat custard.
vV x Animal(x) = Eats(x, Custard)

@ Everyone loves Arcand’s movies.
Vx Yy Person(x) A DirectedBy(y, Arcand) = Likes(x, y)
@ Jim likes Fred’s stuff.

@ A first cousin is a child of a parent’s sibling
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FOL AS A SECOND LANGUAGE

@ Brothers are siblings.
Vx Yy Brother(x,y) < Sibling(x,y)

@ All animals eat custard.
vV x Animal(x) = Eats(x, Custard)

@ Everyone loves Arcand’s movies.
Vx Yy Person(x) A DirectedBy(y, Arcand) = Likes(x, y)

@ Jim likes Fred’s stuff.
Vx Has(Fred, x) = Likes(Jim, x)

@ A first cousin is a child of a parent’s sibling
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FOL AS A SECOND LANGUAGE

@ Brothers are siblings.
Vx Yy Brother(x,y) < Sibling(x,y)

@ All animals eat custard.
vV x Animal(x) = Eats(x, Custard)

@ Everyone loves Arcand’s movies.
Vx Yy Person(x) A DirectedBy(y, Arcand) = Likes(x, y)

@ Jim likes Fred’s stuff.
Vx Has(Fred, x) = Likes(Jim, x)

@ A first cousin is a child of a parent’s sibling

Vx Yy FirstCousin(x,y) <
Ip Ips Parent(p, x) A Sibling(ps, p) A Parent(ps, y)
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CLAUSAL FORM IN PROPOSITIONAL LOGIC

Any sentence (or KB) can be transformed into a set of clauses (clausal form)
—((aeb)Vv(c=-(dA(f=¢))))
@ Eliminate & and =: o = Bis changedto ~a VvV 3, and a & S is
equivalentto (a = 8) A (8 = «).
~(((mavb) A (=bV a)) v (-cV (=(dA(-fVe)))))
@ Apply De Morgan rules to move all the negations in, and remove double
negations.
=((-maVv b)A(-bVa))A=(-cV (=(dA(=fVe))))
(=(=aVv b) VvV =(=bVa)A(=—cA(—=(dA(=fVe))))
((an—-b)Vv(bA—-a))A(cA(dA(-fVe)))
@ Use the distributiveness, associativity and commutativity to move the A’s
out: a V (8 A ) becomes (aV ) A (a V7).
((av(bA-a)A(-bV(bA-a))AcAdA(-fVe)
(avb)An(av-a)A(-bVvD)A(-bV-a)AcANdA(—-fVe)
(avb)A(-bVv—-a)AcANdA(-fVe)
© Clausal form is more conveniently represented as a set of clauses:
{(avb),(-bVv-a),cd (-fVe)
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CLAUSAL FORM IN FOL

@ Eliminate < and =

@ Apply De Morgan rules to move all the negations in, and remove double
negations. Also move negations inside quantifiers: —(V x w) becomes
(I3x —w), and ~(3x w) becomes (Vx —w)

© Standardize variables: rename variables such that no two different
variables have the same name

(vx P(x))v(3x Q(x)) ~ (Vx P(x))Vv(3y Q)
© Move all the quantifiers to the left

(Vx P(x))v(By Qy)) ~ vx 3y P(x)VvQy)
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CLAUSAL FORM IN FOL (CONT’D)

@ Skolemization: Eliminate existential quantifiers in sentences having the
following form:

VX1 VXo ...VXp 3y W[X1,Xo,..., Xn, Y]

o If n = 0then invent a new constant C (Skolem constant) and replace y with

C obtaining
VX1 VX2 ...VXp W[X1,Xo,...,Xn, C]
o Otherwise (i.e., n # 0), invent a new function symbol F (Skolem function)
and replace y with F(x1, X2, . . ., X») obtaining
VX1 VX ...V Xn W[X1,X2,. .., Xn, F(X1, X2, ..., Xn)]

Vx 3y P(x,y) ~ Vx P(x,F(x)) Jy Vx P(x,y) ~ Vx P(x,C)
Jv Vw Ix Yy 3z P(v,w,Xx,y,z) ~ Yw Vy P(C,w, F(w),y, Fi(w,y))

©@ Erase all universal quantifiers (all the variables are introduced by them)

@ Use the distributiveness, associativity and commutativity to move the A’s
out, thus obtaining the clausal form

@ (If possible) convert all the clauses to the Horn form ay A -+ A ap = 3
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EQUALITY AND SUBSTITUTION

@ = is a predicate with the predefined meaning of identity: termy = term. is
true under a given interpretation iff termy and term, refer to the same
object.

@ Suppose a wumpus-world agent is using an FOL KB and perceives a
smell and a breeze (but no glitter):

TELL(KB,Percept([Smell,Breeze,None]))
@ Does the KB entail any particular actions?
Ask(KB,3a Action(a))
@ Possible answer: Yes
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EQUALITY AND SUBSTITUTION

@ = is a predicate with the predefined meaning of identity: termy = term. is
true under a given interpretation iff termy and term, refer to the same
object.

@ Suppose a wumpus-world agent is using an FOL KB and perceives a
smell and a breeze (but no glitter):

TELL(KB,Percept([Smell,Breeze,None]))
@ Does the KB entail any particular actions?
Ask(KB,3a Action(a))

@ Possible answer: Yes, {a/Shoot} < substitution (binding list)

o Given a sentence S and a substitution o, S, denotes the result of plugging o
into S
o Example:
S = Smarter(x, y)
o = {x/Hillary,y/Bill}
S, = Smarter(Hillary, Bill)
o Ask(KB, S) returns some/all o such that KB |= S,
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FOL PROOFS

@ Model checking completely out of question!
@ Application of inference rules sound generation of new sentences from
old

e Proof = a sequence of inference rule applications

e Can use inference rules as operators in a standard search algorithm
@ Inference rules:

o Generalized resolution

avp, —p"vy, 3o B=BAB=587
g V Yo

o Generalized modus ponens

at,...,an, @y A--ANap= 8, Jo (1), =(aj), A Aan), = (an),
Bo

CS 316 (S. D. Bruda) Winter 2023 12/21



PROOF BY CONTRADICTION

KB

Bob is a buffalo 1. Buffalo(Bob)

Pat is a pig 2. Pig(Pat)
Buffaloes outrun pigs 3. Buffalo(x) A Pig(y) = Faster(x,y)
Query

Is something outran by

something else? Faster(u, v)
Negated query: 4. Faster(u,v) =0
(1), (2), and (3),

o = {x/Bob, y/Pat} 5. Faster(Bob, Pat)
(4) and (5), o = {u/Bob, v/Pat} O

@ All the techniques presented with respect to propositional logic work
(inference rules, control strategies), except that in FOL each application
of the inference rule generates a substitution

@ All the substitutions regarding variables appearing in the query are
typically reported (why?)
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UNIFICATION

aVvp, 8"V 7, do B=B,NB=0]
Qo V Vo

@ We need to determine a suitable substitutions and there are many ways
to do it, how do we go about it?

KB Short(LeftLegOf(Richard))
Queries  Short(x) o={x/777}
Short(LeftLegOf(x)) o={x/777}

@ We look for the most general substitution
e o = {x/norvig, y/AIMA, z/ AIMA} is a substitution that makes book(x, y)
and book(norvig, z) agree, but it is not the most general
@ The process of determining the most general substitution is called
unification

@ The substitution produced by such an algorithm is often referred to as the
most general unifier
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UNIFICATION (CONT’D)

| Unify: | With: | Substitution: |

Dog Dog 0

X y {x/y}

X A {x/A}
F(x,G(T)) | F(M(H),G(m)) | {x/M(H),m/T}
F(x,G(T)) | F(M(H), {(m)) Failure!

F(x F(M(H), T(m)) Failure!
F(x,x) F(y,L(y)) Failure!

@ Equality, revised: = is a predicate with the predefined meaning of identity:
termy = term, is true under a given interpretation iff term; and term,
unify with each other
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UNIFICATION ALGORITHM

function UNIFY(A, B: terms, o: substitution) returns failure or substitution
@ Initial call: UNIFY(A, B, 0)
@ Ais boundto X in o whenever A/X € o, otherwise A is free

@ if Aand B are both atoms and A = B then return o

@ if Ais a variable that occurs in B or B is a variable that occurs in A
then return failure

Q if Ais a free variable then return o U {A/B}
Q if Bis a free variable then return o U {B/A}
@ if A/X € o then return UNIFY(X, B, o)
Q if B/X € o then return UNIFY(A, X, o)
Q@ if A=p(ai,a,...,ap) and B= p(by, by, ..., by)
Q fori«+ 1tondo
@ o« UNIFY(aj, bj,0)

@ if o = failure then return failure
Q@ o+~ ocUa

@ returno
@ return failure

CS 316 (S. D. Bruda) Winter 2023 16/21



MULTIPLE SOLUTIONS

Is there such thing as multiple solutions?
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MULTIPLE SOLUTIONS

Is there such thing as multiple solutions? Yes!

Ancestor(Ann,x) => [] @
{a/Ann,b/x} {a/Ann,c/x}

Parent(Ann,x) => ] Ancestor(Ann,b) A Ancestor(b,x) => []
{x/Bob}
O Parent(Ann,b) A Parent(b,x) => ]
{x/Bob} {b/Cecil}

Parent(Cecil,x) => []

w

{x/Dave}
(1)  Parent(Ann, Bob) O
(2) Parent(Ann, Cecil) (x/Dave}
(3) Parent(Cecil, Dave)
(4)  Parent(Cecil, Eric)
(5) Parent(a, b) = Ancestor(a, b)
(6) Ancestor(a, b) A Ancestor(b, ¢) = Ancestor(a, c)
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FORWARD AND BACKWARD CHAINING

@ Modus ponens: If ais true and a = b then b is true

o We use it in forward chaining: we start with the set of clauses (the KB plus
the negated conclusion) and we keep inferring clauses until we infer OJ

@ But we can use modus ponens the other way around too: If b is false and
a = b then a must be false

e This is another way of saying basically the same thing, but with a twist: we
use backward chaining

o We start with the assumtion that the conclusion is true and we prove that this
holds only if [ belongs to the KB

o The big advantage of backward chaining is that it often expands a much
smaller portion of the AND/OR graph than forward chaining
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FUN WITH LISTS

@ A singly linked list is either empty (NIL) or a pointer to a cons cell
cons (a,b) where a is the value at the head of the list and b is
(recursively) a list

@ A logical representation would use a function to represent a cons cell, e.g.
cons (a, b) ~ (a, b)
@ We also choose a constant to represent the empty list, e.g.,
NIL s 1

@ We can now write a predicate on lists like this:
—~member(a,]])
member(a, .(a, b))
member(a, c) = member(a,.(b, c))

@ Check out the result of the following queries:
member(Joe, [])
member(Jack, .(Joe, .(Jack, .(Jill,]))))
member(x,.(Joe, .(Jack, .(Jill,]]))))
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FOL INFERENCE SUMMARY

@ The inference rules (resolution, modus ponens) are the same as in
propositional logic
o Except that, unification is used instead of identity
@ All the control of the inference process from propositional logic (unit
resolution, input resolution, heuristics/preferences) apply, including the
discussed completeness considerations

@ More control strategies are also possible, see some more in Section 9.5.6
(p. 308)
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FOL COMPLETENESS

@ Modus ponens is not refutation-complete, but it is so for Horn KBs

PhD(x) = HighlyQualified(x)
-PhD(x) = EarlyEarnings(x)
HighlyQualified(x) = Rich(x)
EarlyEarnings(x) = Rich(x)

E Rich(Me)

@ Resolution is refutation-complete for FOL
@ How about completeness (as opposed to refutation-completeness)?
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FOL COMPLETENESS

@ Modus ponens is not refutation-complete, but it is so for Horn KBs

PhD(x) = HighlyQualified(x)
-PhD(x) = EarlyEarnings(x)
HighlyQualified(x) = Rich(x)
EarlyEarnings(x) = Rich(x)

E Rich(Me)

@ Resolution is refutation-complete for FOL

@ How about completeness (as opposed to refutation-completeness)?
o There exist problems that cannot be solved by a computer no matter how
powerful (Alan Turing, circa 1935)
@ One can write a program that does inference using resolution and a general
control strategy (e.g., breadth-first search)
@ One can express any problem using FOL (the Church-Turing thesis)
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FOL COMPLETENESS

@ Modus ponens is not refutation-complete, but it is so for Horn KBs

PhD(x) = HighlyQualified(x)
-PhD(x) = EarlyEarnings(x)
HighlyQualified(x) = Rich(x)
EarlyEarnings(x) = Rich(x)

E Rich(Me)

@ Resolution is refutation-complete for FOL

@ How about completeness (as opposed to refutation-completeness)?

o There exist problems that cannot be solved by a computer no matter how
powerful (Alan Turing, circa 1935)

o One can write a program that does inference using resolution and a general
control strategy (e.g., breadth-first search)

@ One can express any problem using FOL (the Church-Turing thesis)

e In all, no inference method is complete, not even resolution!

@ In other words, entailment in FOL is only semidecidable:

can find a proof of « if KB = «, but cannot always prove that KB [~ «
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