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THE WEAKEST LINK

Resolution or modus ponens are exact
There is no possibility of mistake if the rules are followed exactly

These methods of inference (also known as deductive methods) require
that information be complete, precise, and consistent
By contrast, the real world requires common sense reasoning in the face
of incomplete, inexact, and potentially inconsistent information
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INCOMPLETE FACTS

A logic is monotonic if the truth of a sentence does not change when
more facts are added

FOL is for example monotonic
A logic is non-monotonic if the truth of a proposition may change when
new information (facts) is added or old information is deleted
“It rained last night if the grass is wet and the sprinkler was not on last
evening. I am looking right now and see that the grass is wet.”
Did it rain last night?

rained :-
grass_is_wet,
\+ sprinkler_was_on.

grass_is_wet.

?- rained.
Yes
?- assert(sprinkler_was_on).
Yes
?- rained.
No
?- retract(sprinkler_was_on).
Yes
?- rained.
Yes

CS 316 (S. D. Bruda) Winter 2023 2 / 16



CIRCUMSCRIPTION

Similar to the closed world assumption but more precise
We specify particular predicates that are “as false as possible”

Meaning that they are false for all the objects except for those for which we
know them to be true

Bird(x) ∧ ¬Abnormal1(x) ⇒ Flies(x)

provided that Abnormal1 is circumscribed
We draw the conclusion that Flies(Tweety) out of Bird(Tweety) provided that
we do not know that Abnormal1(Tweety) holds

Implemented in Prolog by the not predicate (more or less)
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NON-MONOTONIC LOGIC

Default logic adds a new inference rule: if α is true and β is not known to
be false then γ:

α : β

γ

e.g.,
grass_is_wet : ¬sprinkler_was_on

rained

Nonmonotonic logic adds a new operator M:

α ∧Mβ ⇒ γ

stands for “if α is true and β is not known to be false then γ.” e.g.,

grass_is_wet ∧M¬sprinkler_was_on ⇒ rained

american(X ) ∧ adult(X )∧
M(∃A (car(A) ∧ owns(X ,A))) ⇒ (∃A (car(A) ∧ owns(X ,A)))
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TRUTH MAINTENANCE SYSTEMS

Problem: If we assert ¬P we will have to retract P (if present)
Simple enough, but what if we inferred things starting from P? They will all
need to be retracted
This retractions are managed by a truth maintenance system

Efficient solution: Justification Truth Maintenance Systems (JTMS)
We annotate every sentence in the knowledge base with a justification = set
of sentences from which it was inferred
If we have P ⇒ Q and we assert P then we can add Q with the justification
{P,P ⇒ Q}
A sentence can have any number of justifications
If we retract P the JTMS will also retract the sentences for which P is a
member of every justification.

{P,P ⇒ Q} −→ Q retracted
{P,P ∨ R ⇒ Q} −→ Q retracted
{R,P ∨ R ⇒ Q} −→ Q not retracted

A JTMS will actually mark sentences as “out” instead of retracting them
A sentence that is retracted might become pertinent again in the future
A JTMS will thus thus retain the whole inference chain should a justification
become valid again
Bonus: JTMS also provide a mechanism for generating explanations
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INEXACT FACTS

Action At = leave for airport t minutes before flight
Will At get me there on time?
Problems:

1 Partial observability (road state, other drivers’ plans, . . . )
2 Noisy sensors (traffic reports over the radio)
3 Uncertainty in action outcomes (flat tire, . . . )
4 Intractable complexity of modelling and predicting traffic

A logical approach:
Risks falsehood: “A120 will get me there on time”
Leads to conclusions that are too weak for decision making: “A120 will get me
there on time if there’s no jam on Pont Champlain and it doesn’t rain and my
tires remain intact and . . . ”
Note: I might reasonably expect that A1440 will get me there on time, but such
a logical approach will make me spend a night in the airport
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HANDLING UNCERTAINTY

Nonmonotonic/default logic: I assume won’t get a flat tire, that there is no
traffic jam on Champlain, etc

drive(sherbrooke,dorval ,120) ∧M¬flat_tire ⇒ A120

drive(sherbrooke,dorval ,120) : ¬jammed(champlain)
A120

i.e., assume that A120 works unless contradicted by evidence

But what assumptions are reasonable?
Rules with fudge factors:

sprinkler ⇒0.99 wet_grass
wet_grass ⇒0.7 rained

Problems with combinations: sprinkler causes rain??

Probability: given the available evidence, A120 will get me to the airport in
time with probability 0.03
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PROBABILITY

Probability summarizes
Laziness to enumerate all the exceptions, facts, . . .
Ignorance, i.e., lack of relevant facts, initial conditions, . . .

Bayesian (or subjective) probability relates probability to one’s own state
of knowledge

P(A120|intact_tires) = 0.06
Probabilities change with new evidence

P(A120|intact_tires ∧ 3am) = 0.75

Analogous to logical entailment (KB ⊨ α), not truth
Axioms of probability:

1 0 ≤ P(A) ≤ 1
2 P(True) = 1; P(False) = 0
3 P(A ∨ B) = P(A) + P(B)− P(A ∧ B)
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SYNTAX

Possible worlds defined by assignment of values to random variables
Propositional (Boolean) random varianles: Cavity (do I have a cavity?)

including propositional logic expressions: ¬Burglary ∨ Earthquake

Multivalued random variables: Weather is one of
⟨sunny , rain, cloudy , snow⟩

Values must be exhaustive and mutually exclusive

Propositions constructed by assignment of a value: Weather = sunny
Unconditional (prior) probabilities of propositions:
P(Weather = sunny) = 0.72
Conditional (posterior) probabilities: P(Cavity |Toothache) = 0.8 (i.e.,
probability given that Toothache is all I know)
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SYNTAX (CONT’D)

Probability distribution gives values for all possible assignments:
P(Weather) = ⟨0.72,0.1,0.08,0.1⟩ (normalized)
Joint probability distribution for a set of variables: gives values for each
possible assignment to all the variables P(Weather ,Cavity) = a 4 × 2
matrix of values:

Weather = sunny rain cloudy snow
Cavity = true

Cavity = false
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SEMANTICS

If we know more, e.g., Cavity is also given, then we have
P(Cavity |Toothache,Cavity) = 1
New evidence may be irrelevant, allowing simplification:
P(Cavity |Toothache,Midterm) = P(Cavity |Toothache) = 0.8
Conditional probability:

P(A|B) =
P(A ∧ B)

P(B)
if P(B) ̸= 0

alternatively
P(A ∧ B) = P(A|B)P(B) = P(B|A)P(A)

Bayes’ rule:

P(A|B) =
P(B|A)P(A)

P(B)

Why is this useful?
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BAYES’ RULE

P(Meningitis|StiffNeck) =
P(StiffNeck |Meningitis)P(Meningitis)

P(StiffNeck)

=
0.8 × 0.0001

0.1
= 0.0008

Bayes’ rule is useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) =
P(Effect |Cause)P(Cause)

P(Effect)

Chain rule: successive application of the product rule (on joint probability
distributions)

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1)P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2)P(Xn1 |X1, . . . ,Xn−2)P(Xn|X1, . . . ,Xn−1)

= . . .

=
n∏

i=1

P(Xi |X1, . . . ,Xi−1)
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NORMALIZATION

We want to compute a posterior distribution over A given B = b, and
suppose A has possible values ⟨a1, . . . ,am⟩.

P(A = a1|B = b) = P(B = b|A = a1)P(A = a1)/P(B = b)

. . .

P(A = am|B = b) = P(B = b|A = am)P(A = am)/P(B = b)

∑
i

P(A = ai |B = b) =

(∑
i

P(B = b|A = ai)P(A = ai)

)
/P(B = b)

1 =

(∑
i

P(B = b|A = ai)P(A = ai)

)
/P(B = b)

1/P(B = b) = 1/
∑

i

P(B = b|A = ai)P(A = ai)

→ normalization factor α

P(A|B = b) = αP(B = b|A)P(A)
e.g., let P(B = b|A)P(A) = ⟨0.4,0.2,0.2⟩;
then P(A|B = b) = α⟨0.4,0.2,0.2⟩ = ⟨0.4,0.2,0.2⟩

0.4+0.2+0.2 = ⟨0.5,0.25,0.25⟩
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COMBINING EVIDENCE

Often easier to analyze each specific circumstance instead of the whole
situation:

P(RunOver |Cross)
= P(RunOver |Cross,Light = green)P(Light = green|Cross)
+ P(RunOver |Cross,Light = yellow)P(Light = yellow |Cross)
+ P(RunOver |Cross,Light = red)P(Light = red |Cross)

I.e., we can introduce a variable as an extra condition:

P(X |Y ) =
∑

z

P(X |Y ,Z = z)P(Z = z|Y )

When Y is absent, we have summing out or marginalization:

P(X ) =
∑

z

P(X |Z = z)P(Z = z) =
∑

z

P(X ,Z = z)

Given a joint distribution over a set of variables, the distribution over any
subset can be calculated by summing out the other variables
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FULL JOINT DISTRIBUTION

A complete probability model specifies every entry in the joint distribution
for all the variables X = X1, . . . ,Xn;

I.e., a probability for each possible world wi .
Possible worlds are exclusive and exhaustive, hence the sum of the
probabilities in the matrix is always 1:

∑
i P(wi) = 1.

Toothache = true Toothache = false
Cavity = true 0.04 0.06
Cavity = false 0.01 0.89

For any proposition ϕ defined on the random variables: ϕ(wi) is true or
false
ϕ is equivalent to the disjunction of wis where ϕ(wi) is true, hence

P(ϕ) =
∑

wi : ϕ(wi )

P(wi)

I.e., the unconditional probability of any proposition is computable as the
sum of entries from the full joint distribution
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INFERENCE FROM JOINT DISTRIBUTIONS

We are interested in the posterior joint distribution of the query variables
Y given specific values e for the evidence variables E.
We may have hidden variables H = X \ Y \ E.
Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E = e) = αP(Y,E = e) = α
∑

h

P(Y,E = e,H = h)

The terms in the summation are joint entries because Y, E, and H
together exhaust the set of random variables.
Problem: Huge time and space complexity
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