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INDEPENDENCE

@ Absolute independence:
o Inference from joint distributions: huge space (and thus time) complexity, but
@ Two random variables A B are (absolutely) independent iff P(A|B) = P(A),
i.e., P(A,B) = P(A|B)P(B) = P(A)P(B), and
o If n Boolean variables are independent, the full joint is
P(Xi,..., Xn) =1[;P(X), i.e., can be specified by just n numbers; but
@ Absolute independence is a very strong requirement, rarerly met
@ Relative independence:

o If I have a cavity, the probability that the probe catches does not depend on
whether | have a toothache:

P(Catch| Toothache, Cavity) = P(Catch|Cavity)

i.e., Catchis conditionally independent of Toothache given Cavity
e The same independence holds if | haven’t got a cavity:

P(Catch| Toothache, ~Cavity) = P(Catch|—Cavity)
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BELIEF NETWORKS

@ A simple, graphical notation for conditional independence assertions and
hence for compact specification of full joint distributions

A set of nodes, one per variable

A directed, acyclic graph (of “direct influences”)

A conditional distribution for each node given its parents: P(X;|Parents(X))

In the simplest case, conditional distribution represented as a conditional

probability table
m Earthquake

P(,\)

I'm at work, neighbor John
calls to say my alarm is
ringing, but neighbor Mary
doesn't call. Sometimes the
alarm is set off by minor earth-

Al ra ]
quakes. Is there a burglar?
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e = | )

M
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BELIEF NETWORKS (CONT'D)

@ A belief network provides a complete description of the domain; if X; is
not a parent of X; then they are conditionally independent, thus:

P(Xi| Xi, ..., Xi_1) = P(X;|Parents(X;))

@ More compact than a matrix, so we solve the space problem

@ Computing probabilities:

Burglary
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f
INCREMENTAL CONSTRUCTION OF BELIEF NETWORK

@ A belief network is a correct representation of the domain only if each
node is conditionally independent of it's predecessors (in node ordering),
given its parents

@ e.g., the fact that Mary calls certainly depends on whether there is a
burglary, but is not directly influenced by it (influenced only by the alarm
sounding or not)

P(M|J, A, E, B) = P(M|A)
in general,
P(Xi| X1, ..., Xi—1) = P(X;|Parents(X;))
@ Incremental construction:
@ Choose the set of variables X that describes the domain
@ Choose an ordering (Xi, Xz, ..., Xn) for X
© Forifrom1tondo

@ Add a node for X to the network
@ Choose as parents for this node some minimal set of nodes such that it holds
that P(X;|Xi, ..., Xi_1) = P(X;| Parents(X;))
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INCREMENTAL CONSTRUCTION (CONT'D)

@ The node ordering does matter
o Compare the orderings

B, E,AJ M original construction
M,J,A B E two more edges
M,J E B A same complexity as the full joint distribution!!
o All the above networks represent the same joint distribution, one better than
the others

@ The correct order of nodes is to cosider the “root causes” first, then the
variables they influence directly, and so on
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HIDDEN VARIALBLES

@ Initial evidence: engine won't start

@ Testable variables (thin ovals)

@ Diagnosis variables (thick ovals)

@ Hidden variables (shaded) ensure sparse structure, reduce parameters

starter
broken
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EXACT INFERENCE IN BELIEF NETWORKS

@ Simple queries: compute posterior marginal P(X|E = e)
e e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)
@ Inference by enumeration: rewrite full joint entries using products of
entries in the node tables
e Simple query on the burglary network:

P(B|J = true,M = true) = P(B,dJ = true, M = true)/P(J = true, M = true)
= aP(B,J = true, M = true)
a> > P(B,e a,J = true,M = true)

o Rewrite full joint entries using product of CPT entries:

P(B|J = true, M = true)
= « Z Z P(B = true)P(e)P(a|B = true, e)P(J = true|a)P(M = true|a)

= aP(B=true)) P(e)) P(a|B = true,e)P(J = truela)P(M = true|a)
e a
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INFERENCE BY ENUMERATION

ENUMERATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(Xj, ..., X»)
Q(X) + a distribution over X

for each value x; of X do

extend e with value x; for X

Q(x;) <+ ENUMERATEALL(VARS[bn],e)
return NORMALIZE(Q(X))

ENUMERATEALL(vars,e) returns a real number
if EMPTY?(vars) then return 1.0
else do
Y+ FIRST(vars)
if Yhas value yine
then return P(y|Parents(Y)) x ENUMERATEALL(REST(vars),e)
else return 3 P(y|Parents(Y)) x ENUMERATEALL(REST(vars),ey)
where e, is e extended with Y = y
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THE COMPLEXITY OF EXACT INFERENCE

@ For polytrees (at most one path
between any two nodes): linear in (Gme)

a
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@ For multiply connected networks 0 v a0
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CLUSTERING ALGORITHMS

@ Variable elimination is simple and efficient
@ It can be however less efficient than possible in multiply connected
networks (repeat computations)
@ Improvement: clustering
e Basic idea: join individual nodes so that the network becomes a polytree

o Example: two nodes with boolean variables are replaced by a “meganode”
with one variable that can take the values ft, tf, ft, ff.
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CLUSTERING ALGORITHMS (CONT’D)

n

P(S)
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@ Sprinkler + Rain:

P(S+R)
C| tt tf ft ff
t|.08 .02 .72 .18
f|1.10 .40 .10 .40
o Wet grass:
S+R | P(W)
tt .99
tf .90
ft .90
ff .00
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CLUSTERING ALGORITHMS (CONT’D)

@ Sprinkler + Rain:

P(S+R)
C| tt tf ft ff
t .08 02 .72 .18
T e e f|.10 .40 .10 .40
o Q tl @ Wet grass:
S+R [ P(W)
e [ [f | .99
e tf | .90
Pl ft .90
ff .00

@ Meganodes can have shared variables
@ A special purpose inference algorithm is needed

o Takes a form similar to constraint propagation
o Linear time (with careful bookkeeping)
@ Still an NP-hard problem though
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