CS 316: Utility

Stefan D. Bruda

Winter 2023

Preferences

 An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes

Lottery
$$L = [p, A; (1 - p), B]$$

Notation:

 $A \succ B$ A preferred to B

 $A \sim B$ indifference between A and B

 $A \gtrsim B$ B not preferred to A

RATIONAL PREFERENCES

- Preferences of a rational agent must obey constraints
 - \bullet Rational preferences \Rightarrow behavior describable as maximization of expected utility
- Constraints:
 - Orderability: $(A \succ B) \lor (B \succ A) \lor (A \sim B)$
 - Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
 - Continuity: $A \succ B \succ C \Rightarrow \exists p \ [p, A; 1 p, C] \sim B$
 - Substitutability: $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$
 - Monotonicity: $A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$

CS 316 (S. D. Bruda) Winter 2023 2 / 18

RATIONAL PREFERENCES (CONT'D)

- Violating the constraints leads to self-evident irrationality
- For example an agent with intransitive preferences can be induced to give away all its money
 - If B ≻ C, then an agent who has C would pay (say) 1 cent to get B
 - If A > B, then an agent who has B would pay 1 cent to get A
 - If C > A, then an agent who has A would pay 1 cent to get C

CS 316 (S. D. Bruda) Winter 2023 3 / 18

MAXIMIZING EXPECTED UTILITY

 Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function U such that

$$U(A) \geq U(B) \Leftrightarrow A \gtrsim B$$

$$U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$$

- MEU principle: Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

UTILITIES

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities: Compare a given state A to a standard lottery L_p that has
 - "best possible prize" u_{\top} with probability p
 - "worst possible catastrophe" u_{\perp} with probability (1 p)
- adjust lottery probability p until $A \sim L_p$

CS 316 (S. D. Bruda) Winter 2023 5 / 18

UTILITY SCALES

- Normalized utilities: $u_{\top} = 1.0$, $u_{\perp} = 0.0$
- Micromorts: one-millionth chance of death
 - useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
 - useful for medical decisions involving substantial risk
- Note: behavior is invariant with respect to positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

MONEY

- Money does not behave as a utility function
- Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between a fixed prize x and a lottery [p, M; (1-p), 0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

CS 316 (S. D. Bruda) Winter 2023 7 / 18

DECISION NETWORKS

 Add action nodes and utility nodes to belief networks to enable rational decision making

Algorithm:

For each value of action node:

compute expected value of utility node given action, evidence Return MEU action

CS 316 (S. D. Bruda) Winter 2023 8 / 18

MULTIATTRIBUTE UTILITY

- How can we handle utility functions of many variables $X_1 \dots X_n$? E.g., what is *U*(*Deaths*, *Noise*, *Cost*)?
- How can complex utility functions be assessed from preference behaviour?
 - Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$
 - Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$

CS 316 (S. D. Bruda) 9 / 18 Winter 2023

STRICT DOMINANCE

- Typically define attributes such that U is monotonic in each
- Strict dominance: choice B strictly dominates choice A iff $\forall i \ X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

Strict dominance seldom holds in practice

STOCHASTIC DOMINANCE

 Distribution p₁ stochastically dominates distribution p₂ iff

$$\forall t \int_{-\infty}^{t} p_1(x) dx \leq \int_{-\infty}^{t} p_2(x) dx$$

• If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

$$\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$$

 Multiattribute case: stochastic dominance on all attributes ⇒ optimal

STOCHASTIC DOMINANCE (CONT'D)

- Stochastic dominance can often be determined without exact distributions using qualitative reasoning
 - E.g., construction cost increases with distance from city S_2 is further from the city than S_1
 - \Rightarrow S_1 stochastically dominates S_2 on cost
 - . E.g., injury increases with collision speed
- Can annotate belief networks with stochastic dominance information:
 X ⁺
 ⁺
 ⁺
 Y (X positively influences Y) means that for every value z of Y's other parents Z:

 $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbb{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbb{P}(Y|x_2, \mathbf{z})$

CS 316 (S. D. Bruda) Winter 2023 12 / 18

Preference structure: Deterministic

- X_1 and X_2 preferentially independent of X_3 iff preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x'_1, x'_2, x_3 \rangle$ does not depend on x_3
- E.g., \(Noise, Cost, Safety \):
 \(20,000 \) suffer, \$4.6 \) billion, 0.06 \(deaths/mpm \) vs.
 \(70,000 \) suffer, \$4.2 \) billion, 0.06 \(deaths/mpm \)
- Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..
- Theorem (Debreu, 1960): mutual P.I. $\Rightarrow \exists$ additive value function:

$$V(S) = \sum_{i} V_{i}(X_{i}(S))$$

 $V(noise, cost, death) = -noise \times 10^4 - cost - deaths \times 10^{12}$

• Hence assess *n* single-attribute functions; often a good approximation

CS 316 (S. D. Bruda) Winter 2023 13 / 18

Preference structure: Stochastic

- Need to consider preferences over lotteries:
 X is utility-independent of Y iff preferences over lotteries X do not depend on Y
- Mutual U.I.: each subset is U.I of its complement

$$\Rightarrow \exists$$
 multiplicative utility function:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3$$

$$+ k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1$$

$$+ k_1 k_2 k_3 U_1 U_2 U_3$$

 Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of information: Simple example

- One of the most important part of decision making: know what questions to ask
- Idea: compute value of acquiring each possible piece of evidence Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - Prior probabilities 0.5 each, mutually exclusive
 - Current price of each block is k/2
 - Consultant offers accurate survey of A. Fair price?
- Solution: compute expected value of information = expected value of best action given the information minus expected value of best action without information Survey may say "oil in A" or "no oil in A", prob. 0.5 each
 - = $[0.5 \times \text{ value of "buy A" given "oil in A"}]$
 - + $0.5 \times$ value of "buy B" given "no oil in A"] 0
 - $= (0.5 \times k/2) + (0.5 \times k/2) 0 = k/2$

CS 316 (S. D. Bruda) Winter 2023 15 / 18

Value of information: General formula

- Current evidence E, current best action α
- Possible action outcomes S_i, potential new evidence E_i

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a)$$

• Suppose we knew $E_i = e_{ik}$, then we would choose $\alpha_{e_{ik}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

E_j is a random variable whose value is *currently* unknown
 ⇒ must compute expected gain over all possible values:

$$VPI_{E}(E_{j}) = \left(\sum_{k} P(E_{j} = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_{j} = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

PROPERTIES OF VPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_j) \geq 0$$

• Nonadditive—consider, e.g., obtaining E_i twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

$$VPI_{E}(E_{j}, E_{k}) = VPI_{E}(E_{j}) + VPI_{E,E_{i}}(E_{k}) = VPI_{E}(E_{k}) + VPI_{E,E_{k}}(E_{j})$$

- Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal
 - ⇒ evidence-gathering becomes a sequential decision problem

CS 316 (S. D. Bruda) Winter 2023 17 / 18

QUALITATIVE BEHAVIORS

- a) Choice is obvious, information worth little
- b) Choice is nonobvious, information worth a lot
- c) Choice is nonobvious, information worth little

