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PREFERENCES

@ An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

A
p
Lottery L =[p, A; (1 — p), B] L
I-p
B
@ Notation:
A>-B A preferred to B
A~ B indifference between A and B

AZB B not preferred to A
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RATIONAL PREFERENCES

@ Preferences of a rational agent must obey constraints
o Rational preferences = behavior describable as maximization of expected
utility
@ Constraints:
Orderability: (A> B) v (B> A)V (A~ B)
Transitivity: (A > B)A (B> C) = (A> C)
Continuity: A= B> C=3p [p,A 1—-p,C]~B
Substitutability: A~ B=-[p,A; 1 —p,C] ~ [p,B;1 —p,C]
Monotonicity: A= B= (p>q < [p,A; 1 —p,B] % [q,A; 1 —q,B])
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RATIONAL PREFERENCES (CONT’D)

@ Violating the constraints leads to self-evident irrationality
@ For example an agent with intransitive preferences can be induced to give
away all its money

e If B> C, then an agent who has C A

would pay (say) 1 cent to get B Ic Ic
e If A B, then an agent who has B

would pay 1 centto get A N C!
e If C >~ A, then an agent who has A W,

would pay 1 cent to get C \k/
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MAXIMIZING EXPECTED UTILITY

@ Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given
preferences satisfying the constraints there exists a real-valued function
U such that
UA) >UB) = AZB

U([,D1,S1; .eo s Pn, Sn]) :ZPI'U(SI')

@ MEU principle: Choose the action that maximizes expected utility

@ Note: an agent can be entirely rational (consistent with MEU) without
ever representing or manipulating utilities and probabilities
e E.g., alookup table for perfect tictactoe
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UTILITIES

@ Utilities map states to real numbers. Which numbers?

@ Standard approach to assessment of human utilities:
Compare a given state A to a standard lottery L, that has

@ “best possible prize” u+ with probability p
e “worst possible catastrophe” u, with probability (1 — p)

@ adjust lottery probability p until A ~ L,

continue as before

0.999999
pay $30 ~ L
0.000001 instant death
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UTILITY SCALES

@ Normalized utilities: ur+ =1.0, u, =0.0
@ Micromorts: one-millionth chance of death
e useful for Russian roulette, paying to reduce product risks, etc.
@ QALYs: quality-adjusted life years
e useful for medical decisions involving substantial risk
@ Note: behavior is invariant with respect to positive linear transformation

U(x)=kU(x)+k where ky >0

@ With deterministic prizes only (no lottery choices), only ordinal utility can
be determined, i.e., total order on prizes
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@ Money does not behave as a utility function

@ Given a lottery L with expected monetary value EMV/(L), usually
U(L) < U(EMV(L)), i.e., people are risk-averse

@ Ultility curve: for what probability p am | indifferent between a fixed prize x
and a lottery [p, $M; (1 — p), $0] for large M?

@ Typical empirical data, extrapolated with risk-prone behavior:

+U

oo o

+$

T T
-150,000 800,000
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DECISION NETWORKS

@ Add action nodes and utility nodes to belief networks to enable rational
decision making

Airport Site

@ Algorithm:
For each value of action node:
compute expected value of utility node given action, evidence
Return MEU action
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MULTIATTRIBUTE UTILITY

@ How can we handle utility functions of many variables X; ... X;? E.g.,
what is U(Deaths, Noise, Cost)?
@ How can complex utility functions be assessed from preference
behaviour?
o Idea 1: identify conditions under which decisions can be made without

complete identification of U(xx, ..., X»)
o Idea 2: identify various types of independence in preferences and derive

consequent canonical forms for U(xi, . . ., Xn)
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STRICT DOMINANCE

@ Typically define attributes such that U is monotonic in each

@ Strict dominance: choice B strictly dominates choice A iff
Vi Xi(B) > Xi(A) (and hence U(B) > U(A))

C

Al A :____
|

X Xy

Deterministic attributes Uncertain attributes

@ Strict dominance seldom holds in practice
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STOCHASTIC DOMINANCE

@ Distribution p; stochastically dominates
distribution ps iff

4
®

Probability
B
S

t t
Vt/ p1(x)dx§/ p2(x)dx 04

@ If U is monotonic in X, then A1 with 6 55 5 43 4 33 % 25 2
outcome distribution py stochastically e
dominates A> with outcome distribution

0.8

o
>

po:
/_oo p1(x)U(x)dx > /_Oo p2(x)U(x)dx

Probability
a

S
=

S
o

@ Multiattribute case: stochastic
dominance on all attributes = optimal 3 5 oas a4 a3 25 o

Negative cost
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STOCHASTIC DOMINANCE (CONT'D)

@ Stochastic dominance can often be determined without exact
distributions using qualitative reasoning
e E.g., construction cost increases with distance from city
S; is further from the city than S;
= 1 stochastically dominates S, on cost
e E.g., injury increases with collision speed
@ Can annotate belief networks with stochastic dominance information:
X £, Y (X positively influences Y) means that for every value z of Y’s
other parents Z:

VX1,X X1 > X2 = P(Y]|x1,2) stochastically dominates P(Y|xz, 2)
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PREFERENCE STRUCTURE: DETERMINISTIC

@ Xj and X, preferentially independent of Xj iff preference between
(x1, X2, X3) and (x{, X3, x3) does not depend on X3

@ E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

@ Theorem (Leontief, 1947): if every pair of attributes is P.I. of its
complement, then every subset of attributes is P.| of its complement:
mutual P.I..

@ Theorem (Debreu, 1960): mutual P.I. = 3 additive value function:

V(S) = Zv i(S))

V(noise, cost, death) = —noise x 10* — cost — deaths x 10'2

@ Hence assess n single-attribute functions; often a good approximation
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PREFERENCE STRUCTURE: STOCHASTIC

@ Need to consider preferences over lotteries:
Xis utility-independent of Y iff
preferences over lotteries X do not depend on Y

@ Mutual U.l.: each subset is U.I of its complement
= 3 multiplicative utility function:
U=kU + kU + kUs
+ kikoUy Uz + kokz U2 Us + kzky Uz Us
+ k1 k2k3 U1 U2 U3
@ Routine procedures and software packages for generating preference
tests to identify various canonical families of utility functions
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VALUE OF INFORMATION: SIMPLE EXAMPLE

@ One of the most important part of decision making: know what questions
to ask

@ |dea: compute value of acquiring each possible piece of evidence Can be
done directly from decision network
@ Example: buying oil drilling rights
@ Two blocks A and B, exactly one has oil, worth k
@ Prior probabilities 0.5 each, mutually exclusive
o Current price of each block is k/2
o Consultant offers accurate survey of A. Fair price?
@ Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each
=[0.5 x value of “buy A” given “oil in A”
+ 0.5 x value of “buy B” given “no oil in A”] — 0
=(0.5%x k/2)+ (0.5 x k/2) —0=k/2
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VALUE OF INFORMATION: GENERAL FORMULA

@ Current evidence E, current best action o
@ Possible action outcomes S;, potential new evidence E;

EU(alE) = maaxz U(S:) P(S/|E, a)

@ Suppose we knew E; = ej, then we would choose ag, s.t.

EU(ae, |E, Ej=ei) = max ) _ U(S) P(SIIE, a, = ej)

@ E;is arandom variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIe(E, (Z P(Ej = ex|E)EU(ae, |E, Ej = e,k)> — EU(a|E)

(VPI = value of perfect information)
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PROPERTIES OF VPI

@ Nonnegative—in expectation, not post hoc
Vj,E VPIe(E) >0
@ Nonadditive—consider, e.g., obtaining E; twice
VPIe(Ej, Ex) # VPIg(Ej) + VPIe(Ex)
@ Order-independent
VPIe(Ej, Ex) = VPIg(Ej) + VPIg g(Ex) = VPIg(Ek) + VPIe g,(E))

@ Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal

= evidence-gathering becomes a sequential decision problem
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QUALITATIVE BEHAVIORS

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c¢) Choice is nonobvious, information worth little

U A U TT U

U, U, U, U, U, U,
() (b) (©
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