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PREFERENCES

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p,A; (1 − p),B]

Notation:

A ≻ B A preferred to B

A ∼ B indifference between A and B

A ≻∼ B B not preferred to A
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RATIONAL PREFERENCES

Preferences of a rational agent must obey constraints
Rational preferences ⇒ behavior describable as maximization of expected
utility

Constraints:
Orderability: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)
Transitivity: (A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
Continuity: A ≻ B ≻ C ⇒ ∃ p [p,A; 1 − p,C] ∼ B
Substitutability: A ∼ B ⇒ [p,A; 1 − p,C] ∼ [p,B; 1 − p,C]

Monotonicity: A ≻ B ⇒ (p ≥ q ⇔ [p,A; 1 − p,B] ≻∼ [q,A; 1 − q,B])
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RATIONAL PREFERENCES (CONT’D)

Violating the constraints leads to self-evident irrationality
For example an agent with intransitive preferences can be induced to give
away all its money

If B ≻ C, then an agent who has C
would pay (say) 1 cent to get B

If A ≻ B, then an agent who has B
would pay 1 cent to get A

If C ≻ A, then an agent who has A
would pay 1 cent to get C
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MAXIMIZING EXPECTED UTILITY

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given
preferences satisfying the constraints there exists a real-valued function
U such that

U(A) ≥ U(B) ⇔ A ≻∼ B

U([p1,S1; . . . ; pn,Sn]) =
∑

i

piU(Si)

MEU principle: Choose the action that maximizes expected utility
Note: an agent can be entirely rational (consistent with MEU) without
ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

CS 316 (S. D. Bruda) Winter 2023 4 / 18



UTILITIES

Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities:
Compare a given state A to a standard lottery Lp that has

“best possible prize” u⊤ with probability p
“worst possible catastrophe” u⊥ with probability (1 − p)

adjust lottery probability p until A ∼ Lp
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UTILITY SCALES

Normalized utilities: u⊤ = 1.0, u⊥ = 0.0
Micromorts: one-millionth chance of death

useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant with respect to positive linear transformation

U ′(x) = k1U(x) + k2 where k1 > 0

With deterministic prizes only (no lottery choices), only ordinal utility can
be determined, i.e., total order on prizes
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MONEY

Money does not behave as a utility function
Given a lottery L with expected monetary value EMV (L), usually
U(L) < U(EMV (L)), i.e., people are risk-averse
Utility curve: for what probability p am I indifferent between a fixed prize x
and a lottery [p, $M; (1 − p), $0] for large M?
Typical empirical data, extrapolated with risk-prone behavior:
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DECISION NETWORKS

Add action nodes and utility nodes to belief networks to enable rational
decision making

Algorithm:
For each value of action node:

compute expected value of utility node given action, evidence
Return MEU action
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MULTIATTRIBUTE UTILITY

How can we handle utility functions of many variables X1 . . .Xn? E.g.,
what is U(Deaths,Noise,Cost)?
How can complex utility functions be assessed from preference
behaviour?

Idea 1: identify conditions under which decisions can be made without
complete identification of U(x1, . . . , xn)
Idea 2: identify various types of independence in preferences and derive
consequent canonical forms for U(x1, . . . , xn)
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STRICT DOMINANCE

Typically define attributes such that U is monotonic in each
Strict dominance: choice B strictly dominates choice A iff
∀ i Xi(B) ≥ Xi(A) (and hence U(B) ≥ U(A))

Strict dominance seldom holds in practice
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STOCHASTIC DOMINANCE

Distribution p1 stochastically dominates
distribution p2 iff

∀ t
∫ t

−∞
p1(x)dx ≤

∫ t

−∞
p2(x)dx

If U is monotonic in x , then A1 with
outcome distribution p1 stochastically
dominates A2 with outcome distribution
p2:∫ ∞

−∞
p1(x)U(x)dx ≥

∫ ∞

−∞
p2(x)U(x)dx

Multiattribute case: stochastic
dominance on all attributes ⇒ optimal
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STOCHASTIC DOMINANCE (CONT’D)

Stochastic dominance can often be determined without exact
distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S2 is further from the city than S1

⇒ S1 stochastically dominates S2 on cost
E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X +−→ Y (X positively influences Y ) means that for every value z of Y ’s
other parents Z:

∀ x1, x2 x1 ≥ x2 ⇒ P(Y |x1, z) stochastically dominates P(Y |x2, z)
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PREFERENCE STRUCTURE: DETERMINISTIC

X1 and X2 preferentially independent of X3 iff preference between
⟨x1, x2, x3⟩ and ⟨x ′

1, x
′
2, x3⟩ does not depend on x3

E.g., ⟨Noise,Cost ,Safety⟩:
⟨20,000 suffer, $4.6 billion, 0.06 deaths/mpm⟩ vs.
⟨70,000 suffer, $4.2 billion, 0.06 deaths/mpm⟩
Theorem (Leontief, 1947): if every pair of attributes is P.I. of its
complement, then every subset of attributes is P.I of its complement:
mutual P.I..
Theorem (Debreu, 1960): mutual P.I. ⇒ ∃ additive value function:

V (S) =
∑

i

Vi(Xi(S))

V (noise, cost ,death) = −noise × 104 − cost − deaths × 1012

Hence assess n single-attribute functions; often a good approximation
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PREFERENCE STRUCTURE: STOCHASTIC

Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries X do not depend on Y
Mutual U.I.: each subset is U.I of its complement
⇒ ∃ multiplicative utility function:
U = k1U1 + k2U2 + k3U3
+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1
+ k1k2k3U1U2U3

Routine procedures and software packages for generating preference
tests to identify various canonical families of utility functions

CS 316 (S. D. Bruda) Winter 2023 14 / 18



VALUE OF INFORMATION: SIMPLE EXAMPLE

One of the most important part of decision making: know what questions
to ask
Idea: compute value of acquiring each possible piece of evidence Can be
done directly from decision network
Example: buying oil drilling rights

Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
Consultant offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each
= [0.5 × value of “buy A” given “oil in A”
+ 0.5 × value of “buy B” given “no oil in A”] – 0
= (0.5 × k/2) + (0.5 × k/2)− 0 = k/2
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VALUE OF INFORMATION: GENERAL FORMULA

Current evidence E , current best action α

Possible action outcomes Si , potential new evidence Ej

EU(α|E) = max
a

∑
i

U(Si) P(Si |E ,a)

Suppose we knew Ej =ejk , then we would choose αejk s.t.

EU(αejk |E ,Ej =ejk ) = max
a

∑
i

U(Si) P(Si |E ,a,Ej =ejk )

Ej is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:

VPIE(Ej) =

(∑
k

P(Ej =ejk |E)EU(αejk |E ,Ej =ejk )

)
− EU(α|E)

(VPI = value of perfect information)
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PROPERTIES OF VPI

Nonnegative—in expectation, not post hoc

∀ j ,E VPIE(Ej) ≥ 0

Nonadditive—consider, e.g., obtaining Ej twice

VPIE(Ej ,Ek ) ̸= VPIE(Ej) + VPIE(Ek )

Order-independent

VPIE(Ej ,Ek ) = VPIE(Ej) + VPIE,Ej (Ek ) = VPIE(Ek ) + VPIE,Ek (Ej)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal

⇒ evidence-gathering becomes a sequential decision problem
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QUALITATIVE BEHAVIORS

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little
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