CS 316: Search

Stefan D. Bruda

Winter 2023

GOAL FORMULATION

PROBLEM SOLVING AGENTS

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state

g, a goal, initially null

problem, a problem formulation

state + UPDATE-STATE(state, p)

if sis empty then
g+ FORMULATE-GOAL(state)
problem <~ FORMULATE-PROBLEM(state, g)
S+ SEARCH(problem)

action+ RECOMMENDATION(S, state)

S+ REMAINDER(S, state)

return action

CS 316 (S. D. Bruda)

PROBLEM FORMULATION

Winter 2023

1/25

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state

g, a goal, initially null

problem, a problem formulation

state + UPDATE-STATE(state, p)

if sis empty then
g+ FORMULATE-GOAL(state)
problem <— FORMULATE-PROBLEM(state, g)
S< SEARCH(problem)

action+ RECOMMENDATION(S, state)

s+ REMAINDER(S, state)

return action

@ A goal is a set of world states (explicit or implicit)

CS 316 (S. D. Bruda)

Winter 2023

2/25

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state

g, a goal, initially null

problem, a problem formulation

state «+— UPDATE-STATE(state, p)

if sis empty then
g+ FORMULATE-GOAL(state)
problem +— FORMULATE-PROBLEM(state, g)
S+ SEARCH(problem)

action < RECOMMENDATION(S, state)

s+ REMAINDER(S, state)

return action

@ Decide the structure (and granularity) of states and what are the possible

(elementary) actions

CS 316 (S. D. Bruda)

Winter 2023

3/25

PROBLEM FORMULATION (CONT’D)

Environment
deterministic, accessible
deterministic, inaccessible
nondeterministic, inaccessible
unknown state space

Problem type
single-state problem
multiple-state problem
contingency problem
exploration/online problem

Single-state problem formulation:
@ initial state
@ operators or successor function
@ goal test (explicit set of states or a predicate on states)
@ path cost (additive)
Solution:
@ A sequence of operators leading from initial state to a goal state

CS 316 (S. D. Bruda) Winter 2023

4/25

[] Oradea

[] Vaslui

[] Hirsova

[] Mehadia

Dobreta []

L Craiova Eforie

[] Giurgiu

CS 316 (S. D. Bruda) Winter 2023 5/25

DRIVING IN ROMANIA: PROBLEM FORMULATION

Problem formulation:
@ initial state: Arad

@ operators: {Arad — Zerind, Fagaras — Bucharest, Craiova — Pitesti, ...

@ goal test: the explicit set of states {Bucharest}
@ path cost: total distance travelled so far
Solution:
@ A sequence of operators: Arad — Sibiu — Fagaras — Bucharest

CS 316 (S. D. Bruda) Winter 2023

6/25

@ Abstract state (e.g., “in Arad”) = set of real states

@ Abstract operator (e.g., “Arad — Zerind”) = complex combination of real
actions

@ Abstract solution (e.g., “Arad — Sibiu — Fagaras — Bucharest”) = set of
real-world paths/solutions

Abstraction should make the problem easier but the result should still be
relevant

CS 316 (S. D. Bruda) Winter 2023 7/25

STATE-SPACE SEARCH -l SEARCH (CONT'D)

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action)))
inputs: p, a percept @ Systematic, offline exploration of the state space
static: s, an action sequence, initially empty o Expands states (i.e., generating successors of already-explored states)

state, some description of the current world state @ according to some strategy
g, a goal, initially null
problem, a problem formulation function GENERAL-SEARCH(problem, strategy) returns

a solution or failure
initialize the search tree using the initial state of problem
loop
if there are no candidates for expansion then return failure
problem <— FORMULATE-PROBLEM(state, g) choose a leaf node for expansion according to strategy
S+ SEARCH(problem) ‘ if the node contains a goal state then return corresponding solution

action < RECOMMENDATION(S, state) else expand the node and add the resulting nodes to the search tree
S+ REMAINDER(S, state) forever

return action

state < UPDATE-STATE(state, p)
if sis empty then
g+ FORMULATE-GOAL(state)

CS 316 (S. D. Bruda) Winter 2023 8/25 CS 316 (S. D. Bruda)

Winter 2023 9/25

GENERAL IMPLEMENTATION - | MAKE-NODE

Arad
Depth=0, Cost=0

Sibiu

@ Implement various strategies using a queue

o In fact, various strategies are implemented by various variants of
QUEUING-FN.

o A strategy is defined by determining the order of node expansion prag > Sbu

Depth=1, Cost=140

function GENERAL-SEARCH(problem, QUEUING-FN) returns A node definitely contains the state, but also:
a solution or failure ’ '

~ RmValcea ¢
J " Q ™ NoDE(] S (problem) @ lts parent node Sibiu —» Rm Valcea
nodes <+ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE(problem . Depth=2, Cost=220
loop @ The operator that was applied
if nodes is empty then return failure @ lts depth

node < REMOVE-FRONT(nodes)
if GOAL-TEST(problem) applied to STATE(node) succeeds then
return node

nodes +— QUEUING-FN(nodes, EXPAND(node, OPERATORS(problem)))
forever

@ The path cost Pitesti]

Rm Valcea — Pitesti
Depth=3, Cost=317

Bucharest o

Pitesti — Bucharest
Depth=4, Cost=101

@ Other function of interest: MAKE-NODE (why?)

CS 316 (S. D. Bruda) Winter 2023 10/25 CS 316 (S. D. Bruda) Winter 2023 11/25

DRIVING IN ROMANIA, REVISITED UNINFORMED SEARCH

@ Breadth-first:

function QUEUING-FN(nodes, new-nodes) returns queue of nodes
o nodes < APPEND(nodes, new-nodes)
Straight-line distance
to Bucharest end
Arad 366
Buch: t H .
”s uchares - @ Depth-first;
N, Dobreta 22 function QUEUING-FN(nodes, new-nodes) returns queue of nodes
Cagaras 178 nodes < APPEND(new-nodes, nodes)
iurgiu 77
118§ Hirsova 151 end
Iasi 226
Lugoj H .
Lugoj u @ Uniform-cost:
Nearnt 2 function QUEUING-FN(nodes, new-nodes) returns queue of nodes
hirsova PiteSti o8 nodes < SORT-BY-COST(APPEND(nodes, new-nodes))
Rimnicu Vilcea 193
Sibiu 253 end
Timisoara 329 .
Urziceni 80 @ Depth-limited:
Eforie Vas!ul 199 . . L
B Glurglu Zerind 374 o depth-first search with depth limit /
@ implementation: nodes at depth / have no children (successors)
@ lterative deepening:
o Repeat depth-limited searches with depth /, for all / > 0, untill a good
enough solution is found
CS 316 (S. D. Bruda) Winter 2023 12/25 CS 316 (S. D. Bruda) Winter 2023 13/25

LOOP AVOIDANCE

EVALUATION

Notations: branching factor: b; solution depth: d; maximum depth: m

Complete? | Optimal? Time Space
breadth- .
first Yes Yes iff step | O(b%) Oo(b%)
cost=1
depth-
first No No o(b™) O(bm)
if
gglsto m Yes iff step | Yes # of nodes with | # of nodes with
cost > ¢ less than opti- | less than opti-
mal path cost | mal path cost
(~ O(b%)) (~ O(b%))
Herahi
'd:;i_“’e Yes Yes iff step | O(bY) O(bd)
ening cost=1
CS 316 (S. D. Bruda) Winter 2023 14/25

CS 316 (S. D. Bruda)

@ Operator

o Do not generate parent

o Follow the parent links and do not generate anything that is there already

@ Search algorithm

o Maintain a set of already expanded states

@ Don'’t care

Winter 2023

15/25

INFORMED SEARCH - MORE DRIVING

Recall:
@ General search algorithm.

function GENERAL-SEARCH(problem, QUEUING-FN) returns solution or E’Eﬁé‘ﬁa’r’iﬁfd“"’"“
failure B:?:harest 36((;
Craiova 160
nodes «+ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE(problem))) waa 4 ' P 22
loop Sibiu F 92 Fagaras 178
-) . 18 - 99 agaras G!lll‘glll 77
if nodes is empty then return failure Hirsova it
node < REMOVE-FRONT(nodes) Lugoj 244
if GOAL-TEST(problem) applied to STATE(node) succeeds then Neamt o
return node y Dradea 3%0
nodes + QUEUING-FN(nodes, EXPAND(node, OPERATORS (problem))) N\ o Rimaica Vilcea 193
forever Timisoara 329
Urzic?ni 80
@ Queueing discipline determines the order of expansion; in particular, o Giurgiu Erore Yasul o
function QUEUING-FN(nodes, new-nodes) returns queue of nodes
nodes < SORT-BY-PATH-COST(APPEND(nodes, new-nodes))
end
CS 316 (S. D. Bruda) Winter 2023 16/25 CS 316 (S. D. Bruda) Winter 2023 17/25

BEST-FIRST SEARCH N GREEDY SEARCH

@ Evaluation function h(n) estimates cost from n to goal
e E.g., hgu(n) = straight-line distance of n from Bucharest

@ Greedy search expands first the node that appears to be closest to goal

@ Use an evaluation (heuristic) function for each node
@ Always pick for expansion the most “desirable” node
@ Implementation: Priority queue (insert nodes in decreasing order of

o ? kinl
desirability) o Complete No (can get stuck in loops)
@ Also prone to false starts
@ Variants (of what?): o Optimal? No!
o Greedy o Time complexity? o(b™)
° A o Space Complexity? o(b™)

CS 316 (S. D. Bruda) Winter 2023 18/25 CS 316 (S. D. Bruda) Winter 2023 19/25

A* SEARCH

@ Ideea: A* expands nodes in order of increasing f values
o Gradually adds “f-contours” of nodes (as breadth-first adds layers)

@ Do not expand a path that is already expensive

@ Two componends for the evaluation function: f(n) = g(n) + h(n), where
@ g(n) = const to reach n
e h(n) = estimated cost from n to goal
e f(n) = estimated cost from initial node to goal

@ Theorem. If the heuristic h is admissible then A* is optimal

o A heuristic is admissible if it always underestimates the cost: h(n) < h*(n),
where h*(n) is the true cost from n to goal

CS 316 (S. D. Bruda) Winter 2023 20/25 CS 316 (S. D. Bruda) Winter 2023 21/25

PROPERTIES +- | INVENTING HEURISTIC FUNCTIONS

@ Admissible heuristics for the 8-puzzle:

hy the number of misplaced tiles
h, total Manhattan distance

@ Complete? Yes (for all practical purposes) @ hy is always better than hy, i.e., h, dominates hy

@ Optimal? Yes o thus A* will expand fewer nodes when using h. than when using h

@ Time complexity? Exponential in length of solution, error in h @ Often, admissible heuristics can be derived from the exact solution cost
@ Space complexity? O(b?) (all nodes are kept in memory) of a relaxed version of the problem

o If the rules of the 8-puzzle are relaxed and a tile can move anywhere, then
hy gives the shortest solution

o If the rules of the 8-puzzle are relaxed and a tile can move to any adjacent
square, then h, gives the shortest solution

@ Can you think of a good heuristic for TSP?

CS 316 (S. D. Bruda) Winter 2023 22/25 CS 316 (S. D. Bruda) Winter 2023 23/25

INVENTING HEURISTIC FUNCTIONS (CONT’D) - 0 OTHER SEARCH METHODS

We will not cover these in the lectures, but you are supposed to take a look at

@ One can also invent heuristics using statistical information the relevant material in the textbook
e The more information we gather in previous runs, the better the heuristic @ Memory bounded variants of (mostly) A* (Section 3.5.5)
° However, we g|Ye up the guarantee O_f admisibility . @ lterative improvement algorithms (Sections 4.1)

@ Need to pay attention to the computational complexity of the process of o Hill climbing

actually computing the heuristic function! o Simulated annealing
o Local beam

CS 316 (S. D. Bruda) Winter 2023 24 /25 CS 316 (S. D. Bruda) Winter 2023 25/25

