
CS 316: Search

Stefan D. Bruda

Winter 2023

PROBLEM SOLVING AGENTS

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, p)
if s is empty then

g← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, g)
s←SEARCH(problem)

action←RECOMMENDATION(s, state)
s←REMAINDER(s, state)
return action

CS 316 (S. D. Bruda) Winter 2023 1 / 25

GOAL FORMULATION

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, p)
if s is empty then

g← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, g)
s←SEARCH(problem)

action←RECOMMENDATION(s, state)
s←REMAINDER(s, state)
return action

A goal is a set of world states (explicit or implicit)

CS 316 (S. D. Bruda) Winter 2023 2 / 25

PROBLEM FORMULATION

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, p)
if s is empty then

g← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, g)
s←SEARCH(problem)

action←RECOMMENDATION(s, state)
s←REMAINDER(s, state)
return action

Decide the structure (and granularity) of states and what are the possible
(elementary) actions

CS 316 (S. D. Bruda) Winter 2023 3 / 25

PROBLEM FORMULATION (CONT’D)

Environment Problem type
deterministic, accessible single-state problem

deterministic, inaccessible multiple-state problem
nondeterministic, inaccessible contingency problem

unknown state space exploration/online problem

Single-state problem formulation:
initial state
operators or successor function
goal test (explicit set of states or a predicate on states)
path cost (additive)

Solution:
A sequence of operators leading from initial state to a goal state

CS 316 (S. D. Bruda) Winter 2023 4 / 25

EXAMPLE: DRIVING IN ROMANIA

CS 316 (S. D. Bruda) Winter 2023 5 / 25

DRIVING IN ROMANIA: PROBLEM FORMULATION

Problem formulation:
initial state: Arad
operators: {Arad → Zerind, Fagaras → Bucharest, Craiova → Pitesti, . . . }
goal test: the explicit set of states {Bucharest}
path cost: total distance travelled so far

Solution:
A sequence of operators: Arad → Sibiu → Fagaras → Bucharest

CS 316 (S. D. Bruda) Winter 2023 6 / 25

SELECTING THE RIGHT LEVEL OF ABSTRACTION

Abstract state (e.g., “in Arad”) = set of real states
Abstract operator (e.g., “Arad → Zerind”) = complex combination of real
actions
Abstract solution (e.g., “Arad → Sibiu → Fagaras → Bucharest”) = set of
real-world paths/solutions

Abstraction should make the problem easier but the result should still be
relevant

CS 316 (S. D. Bruda) Winter 2023 7 / 25

STATE-SPACE SEARCH

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, p)
if s is empty then

g← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, g)
s←SEARCH(problem)

action←RECOMMENDATION(s, state)
s←REMAINDER(s, state)
return action

CS 316 (S. D. Bruda) Winter 2023 8 / 25

SEARCH (CONT’D)

Systematic, offline exploration of the state space
Expands states (i.e., generating successors of already-explored states)
according to some strategy

function GENERAL-SEARCH(problem, strategy) returns
a solution or failure

initialize the search tree using the initial state of problem
loop

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return corresponding solution
else expand the node and add the resulting nodes to the search tree

forever

CS 316 (S. D. Bruda) Winter 2023 9 / 25

GENERAL IMPLEMENTATION

Implement various strategies using a queue
In fact, various strategies are implemented by various variants of
QUEUING-FN.
A strategy is defined by determining the order of node expansion

function GENERAL-SEARCH(problem, QUEUING-FN) returns
a solution or failure

nodes←MAKE-QUEUE(MAKE-NODE(INITIAL-STATE(problem)))
loop

if nodes is empty then return failure
node←REMOVE-FRONT(nodes)
if GOAL-TEST(problem) applied to STATE(node) succeeds then

return node
nodes←QUEUING-FN(nodes, EXPAND(node, OPERATORS(problem)))

forever

Other function of interest: MAKE-NODE (why?)

CS 316 (S. D. Bruda) Winter 2023 10 / 25

MAKE-NODE

A node definitely contains the state, but also:
Its parent node
The operator that was applied
Its depth
The path cost

Arad

Depth=0, Cost=0

Arad Sibiu

Depth=1, Cost=140

Sibiu

Sibiu Rm Valcea

Depth=2, Cost=220

Rm Valcea

Rm Valcea Pitesti

Depth=3, Cost=317

Pitesti

Pitesti Bucharest

Depth=4, Cost=101

Bucharest

CS 316 (S. D. Bruda) Winter 2023 11 / 25

DRIVING IN ROMANIA, REVISITED

CS 316 (S. D. Bruda) Winter 2023 12 / 25

UNINFORMED SEARCH

Breadth-first:
function QUEUING-FN(nodes, new-nodes) returns queue of nodes
nodes←APPEND(nodes, new-nodes)
end

Depth-first;
function QUEUING-FN(nodes, new-nodes) returns queue of nodes
nodes←APPEND(new-nodes, nodes)
end

Uniform-cost:
function QUEUING-FN(nodes, new-nodes) returns queue of nodes
nodes←SORT-BY-COST(APPEND(nodes, new-nodes))
end

Depth-limited:
depth-first search with depth limit l
implementation: nodes at depth l have no children (successors)

Iterative deepening:
Repeat depth-limited searches with depth l , for all l > 0, untill a good
enough solution is found

CS 316 (S. D. Bruda) Winter 2023 13 / 25

EVALUATION

Notations: branching factor: b; solution depth: d ; maximum depth: m

Complete? Optimal? Time Space
breadth-
first Yes Yes iff step

cost=1
O(bd) O(bd)

depth-
first No No O(bm) O(bm)

uniform
cost Yes iff step

cost ≥ ε
Yes # of nodes with

less than opti-
mal path cost
(≃ O(bd))

of nodes with
less than opti-
mal path cost
(≃ O(bd))

iterative
deep-
ening

Yes Yes iff step
cost=1

O(bd) O(bd)

CS 316 (S. D. Bruda) Winter 2023 14 / 25

LOOP AVOIDANCE

Operator
Do not generate parent
Follow the parent links and do not generate anything that is there already

Search algorithm
Maintain a set of already expanded states

Don’t care

CS 316 (S. D. Bruda) Winter 2023 15 / 25

INFORMED SEARCH

Recall:
General search algorithm.

function GENERAL-SEARCH(problem, QUEUING-FN) returns solution or
failure

nodes←MAKE-QUEUE(MAKE-NODE(INITIAL-STATE(problem)))
loop

if nodes is empty then return failure
node←REMOVE-FRONT(nodes)
if GOAL-TEST(problem) applied to STATE(node) succeeds then

return node
nodes←QUEUING-FN(nodes, EXPAND(node, OPERATORS(problem)))

forever

Queueing discipline determines the order of expansion; in particular,
function QUEUING-FN(nodes, new-nodes) returns queue of nodes

nodes←SORT-BY-PATH-COST(APPEND(nodes, new-nodes))
end

CS 316 (S. D. Bruda) Winter 2023 16 / 25

MORE DRIVING

CS 316 (S. D. Bruda) Winter 2023 17 / 25

BEST-FIRST SEARCH

Use an evaluation (heuristic) function for each node
Always pick for expansion the most “desirable” node
Implementation: Priority queue (insert nodes in decreasing order of
desirability)
Variants (of what?):

Greedy
A∗

CS 316 (S. D. Bruda) Winter 2023 18 / 25

GREEDY SEARCH

Evaluation function h(n) estimates cost from n to goal
E.g., hsld(n) = straight-line distance of n from Bucharest

Greedy search expands first the node that appears to be closest to goal
Complete? No (can get stuck in loops)

Also prone to false starts

Optimal? No!
Time complexity? O(bm)
Space Complexity? O(bm)

CS 316 (S. D. Bruda) Winter 2023 19 / 25

A∗ SEARCH

Do not expand a path that is already expensive
Two componends for the evaluation function: f (n) = g(n) + h(n), where

g(n) = const to reach n
h(n) = estimated cost from n to goal
f (n) = estimated cost from initial node to goal

Theorem. If the heuristic h is admissible then A∗ is optimal
A heuristic is admissible if it always underestimates the cost: h(n) ≤ h∗(n),
where h∗(n) is the true cost from n to goal

CS 316 (S. D. Bruda) Winter 2023 20 / 25

OPTIMALITY OF A∗ (INFORMAL)

Ideea: A∗ expands nodes in order of increasing f values
Gradually adds “f -contours” of nodes (as breadth-first adds layers)

CS 316 (S. D. Bruda) Winter 2023 21 / 25

PROPERTIES

Complete? Yes (for all practical purposes)
Optimal? Yes
Time complexity? Exponential in length of solution, error in h
Space complexity? O(bd) (all nodes are kept in memory)

CS 316 (S. D. Bruda) Winter 2023 22 / 25

INVENTING HEURISTIC FUNCTIONS

Admissible heuristics for the 8-puzzle:
h1 the number of misplaced tiles
h2 total Manhattan distance

h1 is always better than h2, i.e., h2 dominates h1

thus A∗ will expand fewer nodes when using h2 than when using h1

Often, admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed and a tile can move anywhere, then
h1 gives the shortest solution
If the rules of the 8-puzzle are relaxed and a tile can move to any adjacent
square, then h2 gives the shortest solution
Can you think of a good heuristic for TSP?

CS 316 (S. D. Bruda) Winter 2023 23 / 25

INVENTING HEURISTIC FUNCTIONS (CONT’D)

One can also invent heuristics using statistical information
The more information we gather in previous runs, the better the heuristic
However, we give up the guarantee of admisibility

Need to pay attention to the computational complexity of the process of
actually computing the heuristic function!

CS 316 (S. D. Bruda) Winter 2023 24 / 25

OTHER SEARCH METHODS

We will not cover these in the lectures, but you are supposed to take a look at
the relevant material in the textbook

Memory bounded variants of (mostly) A∗ (Section 3.5.5)
Iterative improvement algorithms (Sections 4.1)

Hill climbing
Simulated annealing
Local beam

CS 316 (S. D. Bruda) Winter 2023 25 / 25

