CS 316: First-order logic

Stefan D. Bruda

Winter 2023

SYNTAX OF FOL

- Basic ingredients:
 - Constants KingJohn, 2, UB, ...
 - Predicates Brother, >,...
 - Functions Sqrt, LeftLegOf,...
 - Variables x, y, a, b, \dots
 - Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
 - Equality =
 - Quantifiers ∀∃
- Complex constructs:
 - Atomic sentence $predicate(term_1, ..., term_n)$ or $term_1 = term_2$
 - Term $function(term_1, ..., term_n)$ or constant or variable

Brother(KingJohn, RichardTheLionheart)

- > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
- Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) $>(1,2) \lor \le (1,2) \to >(1,2) \land \neg >(1,2)$

S 316 (S. D. Bruda) Winter 2023 1 / 21

SEMANTICS OF FOL

SEMANTICS OF FOL: EXAMPLE

Sentences are true with respect to a model and an interpretation

- The model contains objects and relations among them
- An interpretation is a triple $I = (D, \phi, \pi)$, where
 - D (the domain) is a nonempty set; elements of D are individuals
 - \bullet ϕ is a mapping that assigns to each constant an element of D
 - π is a mapping that assigns to each predicate with n arguments a function

 $p: D^n \to \{\mathit{True}, \mathit{False}\}$ and to each function of k arguments a function $f: D^k \to D$

The interpretation specifies referents for

constant symbols \rightarrow objects (individuals)

predicate symbols \rightarrow relations

function symbols → functional relations

• An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

objects X

relations: sets of tuples of objects

functional relations: all tuples of objects + "value" object

CS 316 (S. D. Bruda) Winter 2023 2 / 21 CS 316 (S. D. Bruda) Winter 2023 3 / 2

EXISTENTIAL QUANTIFICATION

∀ ⟨variable⟩ ⟨sentence⟩

• Everyone at Bishop's is smart: $\forall x \; Attends(x, Bishops) \Rightarrow Smart(x)$ $\forall x \ P$ is equivalent to the conjunction of instantiations of P

> Attends(KingJohn, Bishops) ⇒ Smart(KingJohn) Smart(Richard) ∧ Attends(Richard, Bishops) ∧ Attends(Bishops, Bishops) Smart(Bishops) Λ ...

• Do not use \wedge as the main connective with \forall :

$$\forall x \; Attends(x, Bishops) \land Smart(x)$$

"Everyone attends Bishop's and everyone is smart"! Typically, \Rightarrow is used instead

∃ ⟨variable⟩ ⟨sentence⟩

• Someone at Queen's is smart: $\exists x \; Attends(x, Queens) \land Smart(x)$ $\exists x \ P$ is equivalent to the disjunction of instantiations of P

> Attends(KingJohn, Queens) \(\times \) Smart(KingJohn) ∨ Attends(Richard, Queens) Smart(Richard) ∨ Attends(Queens, Queens) Smart(Queens)

• Do not use \Rightarrow as the main connective with \exists :

 $\exists x \; Attends(x, Queens) \Rightarrow Smart(x)$

is true if there is anyone who is not at Queen's! Typically, ∧ is used instead

Winter 2023

Winter 2023

Properties of quantifiers

FOL AS A SECOND LANGUAGE

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$
- $\bullet \exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$
 - $\exists x \ \forall y \ Loves(x, y)$ ("There is a person who loves everyone in the world")
 - $\forall y \exists x \; Loves(x, y)$ ("Everyone in the world is loved by at least one person")
- Quantifier duality: each can be expressed using the other
 - $\forall x \ P(x)$ is equivalent to $\neg(\exists x \ \neg P(x))$
 - $\exists x \ P(x)$ is equivalent to $\neg(\forall x \ \neg P(x))$

```
\forall x \ Likes(x, IceCream) \equiv \neg(\exists x \neg Likes(x, IceCream))
  \exists x \ Likes(x, Broccoli) \equiv \neg(\forall x \neg Likes(x, Broccoli))
```

Brothers are siblings.

 $\forall x \ \forall y \ Brother(x,y) \Leftrightarrow Sibling(x,y)$

All animals eat custard.

 $\forall x \; Animal(x) \Rightarrow Eats(x, Custard)$

Everyone loves Arcand's movies.

 $\forall x \ \forall y \ Person(x) \land DirectedBy(y, Arcand) \Rightarrow Likes(x, y)$

Jim likes Fred's stuff.

 $\forall x \; Has(Fred, x) \Rightarrow Likes(Jim, x)$

A first cousin is a child of a parent's sibling

 $\forall x \ \forall v \ FirstCousin(x, v) \Leftrightarrow$ $\exists p \exists ps \ Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

CS 316 (S. D. Bruda) CS 316 (S. D. Bruda

Any sentence (or KB) can be transformed into a set of clauses (clausal form)

$$\neg((a \Leftrightarrow b) \lor (c \Rightarrow \neg(d \land (f \Rightarrow e))))$$

1 Eliminate \Leftrightarrow and \Rightarrow : $\alpha \Rightarrow \beta$ is changed to $\neg \alpha \lor \beta$, and $\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$\neg(((\neg a \lor b) \land (\neg b \lor a)) \lor (\neg c \lor (\neg(d \land (\neg f \lor e)))))$$

Apply De Morgan rules to move all the negations in, and remove double negations.

$$\begin{array}{l} \neg((\neg a \lor b) \land (\neg b \lor a)) \land \neg(\neg c \lor (\neg(d \land (\neg f \lor e)))) \\ (\neg(\neg a \lor b) \lor \neg(\neg b \lor a)) \land (\neg \neg c \land (\neg \neg(d \land (\neg f \lor e)))) \\ ((a \land \neg b) \lor (b \land \neg a)) \land (c \land (d \land (\neg f \lor e))) \end{array}$$

① Use the distributiveness, associativity and commutativity to move the \land 's out: $\alpha \lor (\beta \land \gamma)$ becomes $(\alpha \lor \beta) \land (\alpha \lor \gamma)$.

$$\begin{array}{c} ((a \lor (b \land \neg a)) \land (\neg b \lor (b \land \neg a))) \land c \land d \land (\neg f \lor e) \\ (a \lor b) \land (a \lor \neg a) \land (\neg b \lor b) \land (\neg b \lor \neg a) \land c \land d \land (\neg f \lor e) \\ (a \lor b) \land (\neg b \lor \neg a) \land c \land d \land (\neg f \lor e) \end{array}$$

Olausal form is more conveniently represented as a set of clauses:

$$\{(a \lor b), (\neg b \lor \neg a), c, d, (\neg f \lor e)\}$$

 \bigcirc Eliminate \Leftrightarrow and \Rightarrow

- Apply De Morgan rules to move all the negations in, and remove double negations. Also move negations inside quantifiers: $\neg(\forall x \ w)$ becomes $(\exists x \ \neg w)$, and $\neg(\exists x \ w)$ becomes $(\forall x \ \neg w)$
- Standardize variables: rename variables such that no two different variables have the same name

$$(\forall x \ P(x)) \lor (\exists x \ Q(x)) \ \leadsto \ (\forall x \ P(x)) \lor (\exists y \ Q(y))$$

Move all the quantifiers to the left

$$(\forall x \ P(x)) \lor (\exists y \ Q(y)) \rightsquigarrow \forall x \ \exists y \ P(x) \lor Q(y)$$

CS 316 (S. D. Bruda)

Winter 202

8 / 21

CS 316 /S D Bruds

Winter 2023

9/21

CLAUSAL FORM IN FOL (CONT'D)

$$\forall x_1 \ \forall x_2 \ \dots \forall x_n \ \exists y \ w[x_1, x_2, \dots, x_n, y]$$

 If n = 0 then invent a new constant C (Skolem constant) and replace y with C obtaining

$$\forall x_1 \ \forall x_2 \ \dots \forall x_n \ w[x_1, x_2, \dots, x_n, C]$$

• Otherwise (i.e., $n \neq 0$), invent a new function symbol F (Skolem function) and replace y with $F(x_1, x_2, \dots, x_n)$ obtaining

$$\forall x_1 \ \forall x_2 \ \dots \forall x_n \ w[x_1, x_2, \dots, x_n, F(x_1, x_2, \dots, x_n)]$$

$$\forall x \exists y \ P(x,y) \implies \forall x \ P(x,F(x)) \qquad \exists y \ \forall x \ P(x,y) \implies \forall x \ P(x,C)$$
$$\exists v \ \forall w \ \exists x \ \forall y \ \exists z \ P(v,w,x,y,z) \implies \forall w \ \forall y \ P(C,w,F_2(w),y,F_1(w,y))$$

- Erase all universal quantifiers (all the variables are introduced by them)
- Use the distributiveness, associativity and commutativity to move the \land 's out, thus obtaining the clausal form
- **1** (If possible) convert all the clauses to the Horn form $\alpha_1 \wedge \cdots \wedge \alpha_n \Rightarrow \beta$

EQUALITY AND SUBSTITUTION

- = is a predicate with the predefined meaning of identity: $term_1 = term_2$ is true under a given interpretation iff $term_1$ and $term_2$ refer to the same object.
- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter):

• Does the KB entail any particular actions?

$$Ask(KB, \exists a \ Action(a))$$

- Possible answer: Yes, $\{a/Shoot\} \leftarrow$ substitution (binding list)
 - Given a sentence S and a substitution σ , S_σ denotes the result of plugging σ into S
 - Example:

$$S = Smarter(x, y)$$

$$\sigma = \{x/Hillary, y/Bill\}$$

$$S_{\sigma} = Smarter(Hillary, Bill)$$

• Ask(KB, S) returns some/all σ such that $KB \models S_{\sigma}$

CS 316 (S. D. Bruda) Winter 2023 10 / 21 CS 316 (S. D. Bruda) Winter 2023 11

FOL PROOFS

KB

Negated query:

PROOF BY CONTRADICTION

- Model checking completely out of question!
- Application of inference rules sound generation of new sentences from old
 - Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm
- Inference rules:
 - Generalized resolution

$$\frac{\alpha \vee \beta', \qquad \neg \beta'' \vee \gamma, \qquad \exists \, \sigma \ \beta = \beta'_{\sigma} \wedge \beta = \beta''_{\sigma}}{\alpha_{\sigma} \vee \gamma_{\sigma}}$$

Generalized modus ponens

$$\underline{\alpha_1, \ldots, \alpha_n, \quad \alpha'_1 \wedge \cdots \wedge \alpha'_n \Rightarrow \beta, \quad \exists \sigma \ (\alpha_1)_{\sigma} = (\alpha'_1)_{\sigma} \wedge \cdots \wedge (\alpha_n)_{\sigma} = (\alpha'_n)_{\sigma}}_{\beta_{\sigma}}$$

Bob is a buffalo Pat is a pig	1. 2.	Buffalo(Bob) Pig(Pat)
Buffaloes outrun pigs	3.	$Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Query		
Is something outran by		
something else?		Faster(u, v)

4. $Faster(u, v) \Rightarrow \Box$

(1), (2), and (3),

$$\sigma = \{x/Bob, y/Pat\}$$
(4) and (5),
$$\sigma = \{u/Bob, v/Pat\}$$
5. Faster(Bob, Pat)

- All the techniques presented with respect to propositional logic work (inference rules, control strategies), except that in FOL each application of the inference rule generates a substitution
- All the substitutions regarding variables appearing in the query are typically reported (why?)

Winter 2023

Winter 2023

JNIFICATION

Unification (cont'd)

•	We need to determine a suitable substitutions and there are many ways
	to do it how do we go about it?

 $\frac{\alpha \vee \beta', \qquad \neg \beta'' \vee \gamma, \qquad \exists \sigma \ \beta = \beta'_{\sigma} \wedge \beta = \beta''_{\sigma}}{\alpha_{\sigma} \vee \gamma_{\sigma}}$

ΚB Short(LeftLegOf(Richard)) Short(x) $\sigma = \{x/???\}$ Queries Short(LeftLegOf(x)) $\sigma = \{x/???\}$

- We look for the most general substitution
 - $\sigma = \{x/norvig, y/AIMA, z/AIMA\}$ is a substitution that makes book(x, y)and book(norvig, z) agree, but it is not the most general
- The process of determining the most general substitution is called unification
 - The substitution produced by such an algorithm is often referred to as the most general unifier

Unify:	With:	Substitution:
Dog	Dog	Ø
X	У	$\{x/y\}$
X	Α	$\{x/A\}$
F(x,G(T))	F(M(H), G(m))	$\{x/M(H), m/T\}$
F(x,G(T))	F(M(H), t(m))	Failure!
F(x)	F(M(H), T(m))	Failure!
F(x,x)	F(y,L(y))	Failure!

• Equality, revised: = is a predicate with the predefined meaning of identity: $term_1 = term_2$ is true under a given interpretation iff $term_1$ and $term_2$ unify with each other

CS 316 (S. D. Bruda) CS 316 (S. D. Bruda

Unification algorithm

MULTIPLE SOLUTIONS

function UNIFY(A, B: terms, σ : substitution) **returns** failure or substitution

- Initial call: UNIFY(A, B, ∅)
- A is bound to X in σ whenever $A/X \in \sigma$, otherwise A is free
- if A and B are both atoms and A = B then return σ
- if A is a variable that occurs in B or B is a variable that occurs in A then return failure
- **1** if A is a free variable then return $\sigma \cup \{A/B\}$
- **1** if *B* is a free variable then return $\sigma \cup \{B/A\}$
- **1** if $A/X \in \sigma$ then return UNIFY (X, B, σ)
- **1** if $B/X \in \sigma$ then return UNIFY(A, X, σ)
- **o** if $A = p(a_1, a_2, ..., a_n)$ and $B = p(b_1, b_2, ..., b_n)$
 - for $i \leftarrow 1$ to n do

 - **a** if $\alpha =$ failure then return failure
- return failure

CS 316 (S. D. Bruda) Winter 2023 CS 316 (S. D. Bruda

FORWARD AND BACKWARD CHAINING

- Modus ponens: If a is true and $a \Rightarrow b$ then b is true
 - We use it in forward chaining: we start with the set of clauses (the KB plus the negated conclusion) and we keep inferring clauses until we infer \Box
- But we can use modus ponens the other way around too: If b is false and $a \Rightarrow b$ then a must be false
 - This is another way of saying basically the same thing, but with a twist: we use backward chaining
 - We start with the assumtion that the conclusion is true and we prove that this holds only if □ belongs to the KB
 - The big advantage of backward chaining is that it often expands a much smaller portion of the AND/OR graph than forward chaining

Is there such thing as multiple solutions? Yes!

- Parent(Ann, Bob)
- Parent(Ann, Cecil)
- Parent(Cecil, Dave)
- Parent(Cecil, Eric) (4)
- $Parent(a, b) \Rightarrow Ancestor(a, b)$
- $Ancestor(a, b) \land Ancestor(b, c) \Rightarrow Ancestor(a, c)$

Winter 2023

FUN WITH LISTS

A logical representation would use a function to represent a cons cell, e.g.

cons (a, b)
$$\rightsquigarrow$$
 .(a, b)

• We also choose a constant to represent the empty list, e.g.,

$$NIL \longrightarrow$$

• We can now write a predicate on lists like this:

```
\neg member(a, [])
member(a, .(a, b))
member(a, c) \Rightarrow member(a, .(b, c))
```

• Check out the result of the following queries:

```
member(Joe, [])
member(Jack, .(Joe, .(Jack, .(Jill, []))))
member(x, .(Joe, .(Jack, .(Jill, []))))
```

FOL INFERENCE SUMMARY

FOL COMPLETENESS

- The inference rules (resolution, modus ponens) are the same as in propositional logic
 - · Except that, unification is used instead of identity
- All the control of the inference process from propositional logic (unit resolution, input resolution, heuristics/preferences) apply, including the discussed completeness considerations
 - More control strategies are also possible, see some more in Section 9.5.6 (p. 308)

Modus ponens is not refutation-complete, but it is so for Horn KBs

$$PhD(x) \Rightarrow HighlyQualified(x)$$

 $\neg PhD(x) \Rightarrow EarlyEarnings(x)$
 $HighlyQualified(x) \Rightarrow Rich(x)$
 $EarlyEarnings(x) \Rightarrow Rich(x)$
 $\Rightarrow Rich(Me)$

- Resolution is refutation-complete for FOL
- How about completeness (as opposed to refutation-completeness)?
 - There exist problems that cannot be solved by a computer no matter how powerful (Alan Turing, circa 1935)
 - One can write a program that does inference using resolution and a general control strategy (e.g., breadth-first search)
 - One can express any problem using FOL (the Church-Turing thesis)
 - In all, no inference method is complete, not even resolution!
 - In other words, entailment in FOL is only semidecidable: can find a proof of α if KB $\models \alpha$, but cannot always prove that KB $\not\models \alpha$

CS 316 (S. D. Bruda) Winter 2023 20 / 21 CS 316 (S. D. Bruda) Winter 2023 21 / 21