
CS 316: First-order logic

Stefan D. Bruda

Winter 2023

SYNTAX OF FOL
Basic ingredients:

Constants KingJohn, 2, UB, . . .
Predicates Brother , >, . . .
Functions Sqrt , LeftLegOf , . . .
Variables x , y , a, b, . . .
Connectives ∧ ∨ ¬ ⇒⇔
Equality =
Quantifiers ∀ ∃

Complex constructs:
Atomic sentence predicate(term1, . . . , termn) or term1 = term2

Term function(term1, . . . , termn) or constant or variable

Brother(KingJohn,RichardTheLionheart)

> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

Sibling(KingJohn,Richard)⇒ Sibling(Richard ,KingJohn)

>(1, 2) ∨ ≤(1, 2) >(1, 2) ∧ ¬>(1, 2)

CS 316 (S. D. Bruda) Winter 2023 1 / 21

SEMANTICS OF FOL

Sentences are true with respect to a model and an interpretation
The model contains objects and relations among them
An interpretation is a triple I = (D, ϕ, π), where

D (the domain) is a nonempty set; elements of D are individuals
ϕ is a mapping that assigns to each constant an element of D
π is a mapping that assigns to each predicate with n arguments a function
p : Dn → {True,False} and to each function of k arguments a function
f : Dk → D

The interpretation specifies referents for
constant symbols → objects (individuals)
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true iff the objects
referred to by term1, . . . , termn are in the relation referred to by predicate

CS 316 (S. D. Bruda) Winter 2023 2 / 21

SEMANTICS OF FOL: EXAMPLE

CS 316 (S. D. Bruda) Winter 2023 3 / 21

UNIVERSAL QUANTIFICATION

∀ ⟨variable⟩ ⟨sentence⟩
Everyone at Bishop’s is smart: ∀ x Attends(x ,Bishops)⇒ Smart(x)
∀ x P is equivalent to the conjunction of instantiations of P

Attends(KingJohn,Bishops) ⇒ Smart(KingJohn)
∧ Attends(Richard ,Bishops) ⇒ Smart(Richard)
∧ Attends(Bishops,Bishops) ⇒ Smart(Bishops)
∧ . . .

Do not use ∧ as the main connective with ∀:

∀ x Attends(x ,Bishops) ∧ Smart(x)

“Everyone attends Bishop’s and everyone is smart”!
Typically,⇒ is used instead

CS 316 (S. D. Bruda) Winter 2023 4 / 21

EXISTENTIAL QUANTIFICATION

∃ ⟨variable⟩ ⟨sentence⟩
Someone at Queen’s is smart: ∃ x Attends(x ,Queens) ∧ Smart(x)
∃ x P is equivalent to the disjunction of instantiations of P

Attends(KingJohn,Queens) ∧ Smart(KingJohn)
∨ Attends(Richard ,Queens) ∧ Smart(Richard)
∨ Attends(Queens,Queens) ∧ Smart(Queens)
∨ . . .

Do not use⇒ as the main connective with ∃:

∃ x Attends(x ,Queens)⇒ Smart(x)

is true if there is anyone who is not at Queen’s!
Typically, ∧ is used instead

CS 316 (S. D. Bruda) Winter 2023 5 / 21

PROPERTIES OF QUANTIFIERS

∀ x ∀ y is the same as ∀ y ∀ x
∃ x ∃ y is the same as ∃ y ∃ x
∃ x ∀ y is not the same as ∀ y ∃ x

∃ x ∀ y Loves(x , y) (“There is a person who loves everyone in the world”)
∀ y ∃ x Loves(x , y) (“Everyone in the world is loved by at least one person”)

Quantifier duality: each can be expressed using the other
∀ x P(x) is equivalent to ¬(∃ x ¬P(x))
∃ x P(x) is equivalent to ¬(∀ x ¬P(x))

∀ x Likes(x , IceCream) ≡ ¬(∃ x ¬Likes(x , IceCream))

∃ x Likes(x ,Broccoli) ≡ ¬(∀ x ¬Likes(x ,Broccoli))

CS 316 (S. D. Bruda) Winter 2023 6 / 21

FOL AS A SECOND LANGUAGE

Brothers are siblings.
∀ x ∀ y Brother(x , y)⇔ Sibling(x , y)
All animals eat custard.
∀ x Animal(x)⇒ Eats(x ,Custard)
Everyone loves Arcand’s movies.
∀ x ∀ y Person(x) ∧ DirectedBy(y ,Arcand)⇒ Likes(x , y)
Jim likes Fred’s stuff.
∀ x Has(Fred , x)⇒ Likes(Jim, x)
A first cousin is a child of a parent’s sibling

∀ x ∀ y FirstCousin(x , y)⇔
∃p ∃ps Parent(p, x) ∧ Sibling(ps,p) ∧ Parent(ps, y)

CS 316 (S. D. Bruda) Winter 2023 7 / 21

CLAUSAL FORM IN PROPOSITIONAL LOGIC

Any sentence (or KB) can be transformed into a set of clauses (clausal form)
¬((a⇔ b) ∨ (c ⇒ ¬(d ∧ (f ⇒ e))))

1 Eliminate⇔ and⇒: α⇒ β is changed to ¬α ∨ β, and α⇔ β is
equivalent to (α⇒ β) ∧ (β ⇒ α).

¬(((¬a ∨ b) ∧ (¬b ∨ a)) ∨ (¬c ∨ (¬(d ∧ (¬f ∨ e)))))
2 Apply De Morgan rules to move all the negations in, and remove double

negations.
¬((¬a ∨ b) ∧ (¬b ∨ a)) ∧ ¬(¬c ∨ (¬(d ∧ (¬f ∨ e))))

(¬(¬a ∨ b) ∨ ¬(¬b ∨ a)) ∧ (¬¬c ∧ (¬¬(d ∧ (¬f ∨ e))))
((a ∧ ¬b) ∨ (b ∧ ¬a)) ∧ (c ∧ (d ∧ (¬f ∨ e)))

3 Use the distributiveness, associativity and commutativity to move the ∧’s
out: α ∨ (β ∧ γ) becomes (α ∨ β) ∧ (α ∨ γ).

((a ∨ (b ∧ ¬a)) ∧ (¬b ∨ (b ∧ ¬a))) ∧ c ∧ d ∧ (¬f ∨ e)
(a ∨ b) ∧ (a ∨ ¬a) ∧ (¬b ∨ b) ∧ (¬b ∨ ¬a) ∧ c ∧ d ∧ (¬f ∨ e)

(a ∨ b) ∧ (¬b ∨ ¬a) ∧ c ∧ d ∧ (¬f ∨ e)
4 Clausal form is more conveniently represented as a set of clauses:

{ (a ∨ b), (¬b ∨ ¬a), c, d , (¬f ∨ e)}

CS 316 (S. D. Bruda) Winter 2023 8 / 21

CLAUSAL FORM IN FOL

1 Eliminate⇔ and⇒
2 Apply De Morgan rules to move all the negations in, and remove double

negations. Also move negations inside quantifiers: ¬(∀ x w) becomes
(∃ x ¬w), and ¬(∃ x w) becomes (∀ x ¬w)

3 Standardize variables: rename variables such that no two different
variables have the same name

(∀ x P(x)) ∨ (∃ x Q(x)) ⇝ (∀ x P(x)) ∨ (∃ y Q(y))

4 Move all the quantifiers to the left

(∀ x P(x)) ∨ (∃ y Q(y)) ⇝ ∀ x ∃ y P(x) ∨Q(y)

CS 316 (S. D. Bruda) Winter 2023 9 / 21

CLAUSAL FORM IN FOL (CONT’D)
5 Skolemization: Eliminate existential quantifiers in sentences having the

following form:

∀ x1 ∀ x2 . . . ∀ xn ∃ y w [x1, x2, . . . , xn, y]

If n = 0 then invent a new constant C (Skolem constant) and replace y with
C obtaining

∀ x1 ∀ x2 . . .∀ xn w [x1, x2, . . . , xn,C]

Otherwise (i.e., n ̸= 0), invent a new function symbol F (Skolem function)
and replace y with F (x1, x2, . . . , xn) obtaining

∀ x1 ∀ x2 . . .∀ xn w [x1, x2, . . . , xn,F (x1, x2, . . . , xn)]

∀ x ∃ y P(x , y) ⇝ ∀ x P(x ,F (x)) ∃ y ∀ x P(x , y) ⇝ ∀ x P(x ,C)
∃ v ∀w ∃ x ∀ y ∃ z P(v ,w , x , y , z) ⇝ ∀w ∀ y P(C,w ,F2(w), y ,F1(w , y))

6 Erase all universal quantifiers (all the variables are introduced by them)
7 Use the distributiveness, associativity and commutativity to move the ∧’s

out, thus obtaining the clausal form
8 (If possible) convert all the clauses to the Horn form α1 ∧ · · · ∧ αn ⇒ β

CS 316 (S. D. Bruda) Winter 2023 10 / 21

EQUALITY AND SUBSTITUTION

= is a predicate with the predefined meaning of identity: term1 = term2 is
true under a given interpretation iff term1 and term2 refer to the same
object.
Suppose a wumpus-world agent is using an FOL KB and perceives a
smell and a breeze (but no glitter):

TELL(KB,Percept([Smell,Breeze,None]))
Does the KB entail any particular actions?

Ask(KB,∃a Action(a))
Possible answer: Yes, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ, Sσ denotes the result of plugging σ
into S
Example:
S = Smarter(x , y)
σ = {x/Hillary , y/Bill}
Sσ = Smarter(Hillary ,Bill)
Ask(KB,S) returns some/all σ such that KB |= Sσ

CS 316 (S. D. Bruda) Winter 2023 11 / 21

FOL PROOFS

Model checking completely out of question!
Application of inference rules sound generation of new sentences from
old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

Inference rules:
Generalized resolution

α ∨ β′, ¬β′′ ∨ γ, ∃σ β = β′
σ ∧ β = β′′

σ

ασ ∨ γσ

Generalized modus ponens

α1, . . . , αn, α′
1 ∧ · · · ∧ α′

n ⇒ β, ∃σ (α1)σ = (α′
1)σ ∧ · · · ∧ (αn)σ = (α′

n)σ
βσ

CS 316 (S. D. Bruda) Winter 2023 12 / 21

PROOF BY CONTRADICTION

KB
Bob is a buffalo 1. Buffalo(Bob)
Pat is a pig 2. Pig(Pat)
Buffaloes outrun pigs 3. Buffalo(x) ∧ Pig(y)⇒ Faster(x , y)
Query
Is something outran by
something else? Faster(u, v)
Negated query: 4. Faster(u, v)⇒ □
(1), (2), and (3),
σ = {x/Bob, y/Pat} 5. Faster(Bob,Pat)
(4) and (5), σ = {u/Bob, v/Pat} □

All the techniques presented with respect to propositional logic work
(inference rules, control strategies), except that in FOL each application
of the inference rule generates a substitution
All the substitutions regarding variables appearing in the query are
typically reported (why?)

CS 316 (S. D. Bruda) Winter 2023 13 / 21

UNIFICATION

α ∨ β′, ¬β′′ ∨ γ, ∃σ β = β′
σ ∧ β = β′′

σ

ασ ∨ γσ

We need to determine a suitable substitutions and there are many ways
to do it, how do we go about it?

KB Short(LeftLegOf (Richard))
Queries Short(x) σ = {x/???}

Short(LeftLegOf (x)) σ = {x/???}
We look for the most general substitution

σ = {x/norvig, y/AIMA, z/AIMA} is a substitution that makes book(x , y)
and book(norvig, z) agree, but it is not the most general

The process of determining the most general substitution is called
unification

The substitution produced by such an algorithm is often referred to as the
most general unifier

CS 316 (S. D. Bruda) Winter 2023 14 / 21

UNIFICATION (CONT’D)

Unify: With: Substitution:
Dog Dog ∅

x y {x/y}
x A {x/A}

F (x ,G(T)) F (M(H),G(m)) {x/M(H),m/T}
F (x ,G(T)) F (M(H), t(m)) Failure!

F (x) F (M(H),T (m)) Failure!
F (x , x) F (y ,L(y)) Failure!

Equality, revised: = is a predicate with the predefined meaning of identity:
term1 = term2 is true under a given interpretation iff term1 and term2
unify with each other

CS 316 (S. D. Bruda) Winter 2023 15 / 21

UNIFICATION ALGORITHM

function UNIFY(A, B: terms, σ: substitution) returns failure or substitution
Initial call: UNIFY(A, B, ∅)
A is bound to X in σ whenever A/X ∈ σ, otherwise A is free

1 if A and B are both atoms and A = B then return σ

2 if A is a variable that occurs in B or B is a variable that occurs in A
then return failure

3 if A is a free variable then return σ ∪ {A/B}
4 if B is a free variable then return σ ∪ {B/A}
5 if A/X ∈ σ then return UNIFY(X , B, σ)
6 if B/X ∈ σ then return UNIFY(A, X , σ)
7 if A = p(a1,a2, . . . ,an) and B = p(b1,b2, . . . ,bn)

1 for i ← 1 to n do
1 α← UNIFY(ai , bi , σ)
2 if α = failure then return failure
3 σ ← σ ∪ α

2 return σ

8 return failure
CS 316 (S. D. Bruda) Winter 2023 16 / 21

MULTIPLE SOLUTIONS

Is there such thing as multiple solutions? Yes!

65

1

Ancestor(Ann,x) =>

Parent(Ann,x) => 55

Parent(Ann,b) Parent(b,x) => 2

Parent(Cecil,x) => 3

Ancestor(Ann,b) Ancestor(b,x) =>

{x/Bob}

{a/Ann,c/x}

{x/Bob}

{b/Cecil}

{x/Dave}

{x/Dave}

{a/Ann,b/x}

(1) Parent(Ann,Bob)
(2) Parent(Ann,Cecil)
(3) Parent(Cecil ,Dave)
(4) Parent(Cecil ,Eric)
(5) Parent(a,b)⇒ Ancestor(a,b)
(6) Ancestor(a,b) ∧ Ancestor(b, c)⇒ Ancestor(a, c)

CS 316 (S. D. Bruda) Winter 2023 17 / 21

FORWARD AND BACKWARD CHAINING

Modus ponens: If a is true and a⇒ b then b is true
We use it in forward chaining: we start with the set of clauses (the KB plus
the negated conclusion) and we keep inferring clauses until we infer □

But we can use modus ponens the other way around too: If b is false and
a⇒ b then a must be false

This is another way of saying basically the same thing, but with a twist: we
use backward chaining
We start with the assumtion that the conclusion is true and we prove that this
holds only if □ belongs to the KB
The big advantage of backward chaining is that it often expands a much
smaller portion of the AND/OR graph than forward chaining

CS 316 (S. D. Bruda) Winter 2023 18 / 21

FUN WITH LISTS

A singly linked list is either empty (NIL) or a pointer to a cons cell
cons(a,b) where a is the value at the head of the list and b is
(recursively) a list
A logical representation would use a function to represent a cons cell, e.g.

cons(a,b) ⇝ .(a,b)

We also choose a constant to represent the empty list, e.g.,

NIL ⇝ []

We can now write a predicate on lists like this:
¬member(a, [])
member(a, .(a,b))
member(a, c)⇒ member(a, .(b, c))

Check out the result of the following queries:
member(Joe, [])
member(Jack , .(Joe, .(Jack , .(Jill , []))))
member(x , .(Joe, .(Jack , .(Jill , []))))

CS 316 (S. D. Bruda) Winter 2023 19 / 21

FOL INFERENCE SUMMARY

The inference rules (resolution, modus ponens) are the same as in
propositional logic

Except that, unification is used instead of identity

All the control of the inference process from propositional logic (unit
resolution, input resolution, heuristics/preferences) apply, including the
discussed completeness considerations

More control strategies are also possible, see some more in Section 9.5.6
(p. 308)

CS 316 (S. D. Bruda) Winter 2023 20 / 21

FOL COMPLETENESS

Modus ponens is not refutation-complete, but it is so for Horn KBs

PhD(x)⇒ HighlyQualified(x)
¬PhD(x)⇒ EarlyEarnings(x)
HighlyQualified(x)⇒ Rich(x)
EarlyEarnings(x)⇒ Rich(x)




⊨ Rich(Me)

Resolution is refutation-complete for FOL
How about completeness (as opposed to refutation-completeness)?

There exist problems that cannot be solved by a computer no matter how
powerful (Alan Turing, circa 1935)
One can write a program that does inference using resolution and a general
control strategy (e.g., breadth-first search)
One can express any problem using FOL (the Church-Turing thesis)
In all, no inference method is complete, not even resolution!
In other words, entailment in FOL is only semidecidable:

can find a proof of α if KB |= α, but cannot always prove that KB ̸|= α

CS 316 (S. D. Bruda) Winter 2023 21 / 21

