
CS 316: Prolog

Stefan D. Bruda

Winter 2023

PROLOG

Widely used in Europe and Japan
Basis of the 5-th Generation project
FOL inference system
Knowledge base represented using Horn clauses

Program: set of (Horn) clauses.
Input data: queries (i.e., FOL sentences to be proved)
Output: failure or success + variable bindings

Uses input modus ponens for proofs
more precisely, depth-first, left-to-right backward chaining
returns on request all the possible solutions

Uses database semantics instead of the general FOL semantics

CS 316 (S. D. Bruda) Winter 2023 1 / 28

SYNTAX

Atoms: constants (including function names and predicate names)
Everything not starting with a capital letter or underscore, and everything
surrounded by simple quotes is an atom

Variables: everything starting with a capital letter or underscore
Convenient notation for lists:
.(a,b)⇝ [A|B] .(Joe, .(Jack , .(Jill , []))))⇝ [joe,jack,jill].
Clauses: facts

parent(ann,bob). parent(cecil,dave).
parent(ann,cecil). parent(cecil,eric).

and rules (with all variables universally quantified)
ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), ancestor (B,C).

Queries: FOL sentences (with all variables existentially quantified)

CS 316 (S. D. Bruda) Winter 2023 2 / 28

DATABASE SEMANTICS

Suppose Richard has two brothers, John and Geofrey:

Brother(John,Richard) ∧ Brother(Geoffrey ,Richard)

This assertion is always true in a model where Richard has one brother, so
we need to add John ̸= Geoffrey
The sentence does not rule out that Richard has more than two brothers
The correct assertion therefore is:

Brother(John,Richard) ∧ Brother(Geoffrey ,Richard) ∧
John ̸= Geoffrey ∧
∀ x Brother(x ,Richard) ⇒ (x = John ∨ x = Geoffrey)

Things get complex pretty fast, translating knowledge into knowledge bases
becomes exceedingly difficult

We can use a semantics that provides for more straightforward
expressions: database semantics

CS 316 (S. D. Bruda) Winter 2023 3 / 28



DATABASE SEMANTICS (CONT’D)

Unique-names assumption: every constant symbol refers to a distinct
object

Breaks down skolemization but makes life easier otherwise

Domain closure: no model contains more domain elements than those
named in constant symbols

Makes model checking feasible (but still very complex)

Closed world assumption: whatever is not known to be true is assumed
false

CS 316 (S. D. Bruda) Winter 2023 4 / 28

EXAMPLE

FOL:
¬Member(a, [])
Member(a, .(a,b))
Member(a, c) ⇒

Member(a, .(b, c))

Program (file “memb.pl”):
memb(A,.(A,B)).
memb(A,.(B,C)) :- memb(A,C).

. . . or . . .
memb(A,[A|B]).
memb(A,[B|C]) :- memb(A,C).

Queries:
?- [memb]. % consult(memb).
Yes
?- memb(X,[1,2,3]).

X = 1

Yes
?- memb(X,[1,2,3]).

X = 1 ;

X = 2 ;

X = 3 ;

No
?-

CS 316 (S. D. Bruda) Winter 2023 5 / 28

PROOF TREES

A family tree:
parent(ann,bob). parent(ann,calvin).
parent(bob,dave). parent(dave,helen).

parent(ann,bob) parent(ann,calvin) parent(bob,dave) parent(dave,helen)

parent(X,Y)

Other family relations:
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
siblings(X,Y) :- parent(Z,X),parent(Z,Y), not(X = Y).

parent(X,Z)

grandparent(X,Y)

parent(Z,Y) parent(Z,X) parent(Z,Y) not (X = Y)

siblings(X,Y)

CS 316 (S. D. Bruda) Winter 2023 6 / 28

PROOF TREES (CONT’D)

Yet another family relation:
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

ancestor(X,Y)

parent(X,Y) parent(X,Z) ancestor(Z,Y)

A person is happy if she is healthy, wealthy, or wise:
happy(Smb) :- person(Smb),happy(Smb).
happy(Smb) :- person(Smb),healthy(Smb).
happy(Smb) :- person(Smb),wise(Smb).

person(Smb)

happy(Smb)

happy(Smb) person(Smb) healthy(Smb) person(Smb) wealthy(Smb)

CS 316 (S. D. Bruda) Winter 2023 7 / 28



BACKTRACKING IMPLEMENTATION

Fail

Call Exit

Redo

parent(X,Z)

Fail

Call Exit

Redo

parent(Z,Y)

X/ann

Z/bob

callX/ann

Z/bob

exit

X/ann

Z/calvin

grandparent(X,Y)

parent(Z,Y)

X/ann

Z/calvin

call

redo

parent(X,Z)

parent(ann,bob)

call
exit

call

parent(bob,dave)

parent(dave,helen)

fail

X/ann

Z/bob

Z/dave

exit

X/ann

Z/calvin

X/ann

Z/bob

exit

call

exit

parent(ann,calvin)

CS 316 (S. D. Bruda) Winter 2023 8 / 28

NUMERICAL COMPUTATIONS

Some functions are also defined as infix operators
e.g., +(1,2) can be written 1+2

There are some functions and predicates with predefined meaning (e.g.,
usual relational comparison for numbers)
Built-in predicate is for arithmetic
?- X = 1+2.

CS 316 (S. D. Bruda) Winter 2023 9 / 28

NUMERICAL COMPUTATIONS

Some functions are also defined as infix operators
e.g., +(1,2) can be written 1+2

There are some functions and predicates with predefined meaning (e.g.,
usual relational comparison for numbers)
Built-in predicate is for arithmetic
?- X = 1+2.
X = 1+2 ;

No

?- X is 1+2.

X = 3 ;

No

CS 316 (S. D. Bruda) Winter 2023 10 / 28

KNIGHTS AND THEIR TOUR

% The board size is given by the predicate size/1:
size(5).

% The position of the knight is represented by the function
% pos(X,Y). There are 8 possible moves in the middle:
move(pos(I,J), pos(K,L)) :- K = I+1, L = J-2.
move(pos(I,J), pos(K,L)) :- K = I+1, L = J+2.
move(pos(I,J), pos(K,L)) :- K = I+2, L = J+1.
move(pos(I,J), pos(K,L)) :- K = I+2, L = J-1.
move(pos(I,J), pos(K,L)) :- K = I-1, L = J+2.
move(pos(I,J), pos(K,L)) :- K = I-1, L = J-2.
move(pos(I,J), pos(K,L)) :- K = I-2, L = J+1.
move(pos(I,J), pos(K,L)) :- K = I-2, L = J-1.

CS 316 (S. D. Bruda) Winter 2023 11 / 28



KNIGHTS AND THEIR TOUR

% The board size is given by the predicate size/1:
size(5).

% The position of the knight is represented by the function
% pos(X,Y). There are 8 possible moves in the middle:
move(pos(I,J), pos(K,L)) :- K is I+1, L is J-2.
move(pos(I,J), pos(K,L)) :- K is I+1, L is J+2.
move(pos(I,J), pos(K,L)) :- K is I+2, L is J+1.
move(pos(I,J), pos(K,L)) :- K is I+2, L is J-1.
move(pos(I,J), pos(K,L)) :- K is I-1, L is J+2.
move(pos(I,J), pos(K,L)) :- K is I-1, L is J-2.
move(pos(I,J), pos(K,L)) :- K is I-2, L is J+1.
move(pos(I,J), pos(K,L)) :- K is I-2, L is J-1.

% However, if the knight is somwhere close to board’s margins,
% some moves might fall out of the board:
inside(pos(A,B)) :- size(Max), A > 0, A =< Max, B > 0, B =< Max.

search1(A,A,[]).
search1(A,B,[X|Mvs]) :- move(A,X), inside(X), search1(X,B,Mvs).

CS 316 (S. D. Bruda) Winter 2023 12 / 28

KNIGHTS AND THEIR TOUR (CONT’D)

?- [knights].
% knights compiled 0.00 sec, 336 bytes

Yes
?- search1(pos(0,0),pos(1,2),M).

M = [pos(1, 2)]

CS 316 (S. D. Bruda) Winter 2023 13 / 28

KNIGHTS AND THEIR TOUR (CONT’D)

?- [knights].
% knights compiled 0.00 sec, 336 bytes

Yes
?- search1(pos(0,0),pos(1,2),M).

M = [pos(1, 2)] ;

ERROR: Out of local stack
Exception: (16,218) move(pos(5, 2), _G116577) ? abort

% Execution Aborted
?-

CS 316 (S. D. Bruda) Winter 2023 14 / 28

KNIGHTS AND THEIR TOUR (CONT’D)

search(A,B,R) :- search_aux(A,B,[A],R).

search_aux(Z,Z,L,R) :- reverse(L,R).
search_aux(X,Y,L,R) :- move(X,Z), inside(Z),

\+ member(Z,L),
search_aux(Z,Y,[Z|L],R).

. . . and then:

?- search(pos(0,0),pos(1,2),M).

M = [pos(0, 0), pos(1, 2)] ;

M = [pos(0, 0), pos(2, 1), pos(3, 3), pos(4, 1), |...] ;

M = [pos(0, 0), pos(2, 1), pos(3, 3), pos(4, 1), |...] ;

. . . and so on (about 127 solutions!)

CS 316 (S. D. Bruda) Winter 2023 15 / 28



CSP

Map colouring:

% problem instance
border(a,b). border(a,c). border(d,e). border(b,e).
border(a,d). border(b,c). border(e,c). border(d,c).

adj(X,Y) :- border(X,Y).
adj(X,Y) :- border(Y,X).

colour(X) :- member(X,[red,green,blue]).

colour_map([],Colouring,Colouring).
colour_map([Country|Countries], Colouring, R) :-

colour(X), \+ conflict(Country,X,Colouring),
colour_map(Countries,[colour(X,Country)|Colouring],R).

% violates constraint?
conflict(Country,X,Colouring) :-

adj(Country,Country1), % more efficient if adj/2 is first
member(colour(X,Country1),Colouring).

CS 316 (S. D. Bruda) Winter 2023 16 / 28

NEGATION AS FAILURE

Negation in Prolog: not/1 or \+/1
Recall that Prolog assumes the closed world paradigm; the negation is
therefore different from logical negation:
?- member(X,[1,2,3]).
X = 1 ;
X = 2 ;
X = 3 ;
No

?- not(member(X,[1,2,3])).
No

?- not(not(member(X,[1,2,3]))).
X = _G332 ;
No

not/1 fails upon resatisfaction (a goal can fail in only one way)
not/1 does not bind variables

CS 316 (S. D. Bruda) Winter 2023 17 / 28

NEGATION IN CASE SELECTIONS

positive(X) :- X > 0.
negative(X) :- X < 0.

sign(X,+) :- positive(X).
sign(X,-) :- negative(X).
sign(X,0).

?- sign(1,X).

X = + ;

CS 316 (S. D. Bruda) Winter 2023 18 / 28

NEGATION IN CASE SELECTIONS

positive(X) :- X > 0.
negative(X) :- X < 0.

sign(X,+) :- positive(X).
sign(X,-) :- negative(X).
sign(X,0).

?- sign(1,X).

X = + ;

X = 0 ;

No

sign1(X,+) :- positive(X).
sign1(X,-) :- negative(X).
sign1(X,0) :- not(positive(X)),

not(negative(X)).

?- sign1(1,X).

X = + ;

No

CS 316 (S. D. Bruda) Winter 2023 19 / 28



MODIFYING THE SEARCH SPACE

The !/0 predicate (pronounced “cut”) does not allow backtracking over it. All
attempts to redo goals to the left of the cut fail.

Commit:
sign2(X,+) :- positive(X), ! .
sign2(X,-) :- negative(X), ! .
sign2(X,0).

Succeed once:
member(X,[X|_]).
member(X,[_|Y]) :- member(X,Y).

membchk(X,[X|_]) :- !.
membchk(X,[_|Y]) :- membchk(X,Y).

CS 316 (S. D. Bruda) Winter 2023 20 / 28

MODIFYING THE SEARCH SPACE (CONT’D)

Succeed once (cont’d):
fact1(1,1).
fact1(N,R) :- N1 is N-1, fact1(N1,R1), R is N*R1.

fact2(1,1).
fact2(N,R) :- N>1, N1 is N-1, fact2(N1,R1), R is N*R1.

fact3(1,1) :- !.
fact3(N,R) :- N1 is N-1, fact3(N1,R1), R is N*R1.

Fail goal now
An apparently useless predicate: fail/0 always fails
not(P) :- P, !, fail.
not(P).
Another useful predicate: call/1.

call(P) behaves as if P were passed as a goal to the interpreter

not(P) :- call(P), !, fail.
not(P).

CS 316 (S. D. Bruda) Winter 2023 21 / 28

AN ADVENTURE GAME

Consider the following knowledge base:
location(egg,duck_pen).
location(ducks,duck_pen).
location(fox,woods).
location(you,house).

connect(yard,house).
connect(yard,woods).

is_closed(gate).
connect(duck_pen,yard) :- is_open(gate).

We want to move around, be able to open and close the gate, pick the
egg, and so on
In order to do this we need to modify the knowledge base dynamically

CS 316 (S. D. Bruda) Winter 2023 22 / 28

MODIFYING THE KNOWLEDGE BASE

Adding a fact to the knowledge base:
assert adds the fact given as argument somewere (implementation
dependent)
asserta adds the fact given as argument at the beginning of the knowledge
base
assertz adds the fact given as argument at the end
all variants succeed only once

Removing a fact from the knowledge base:
retract removes one instance that unifies with the argument
removes one more instance at each redo attempt
fails when no removal is possible

CS 316 (S. D. Bruda) Winter 2023 23 / 28



CONVINCING THE KNOWLEDGE BASE TO ALLOW

CHANGES

All the industrial grade PROLOG implementations compile the knowledge
base as to increase the speed of retrieving facts from it

SWI PROLOG is one such an example

In these variants, you need to specify which facts are changeable at run
time

These predicates will be stored separately, in an un-optimized fashion
The dynamic declaration must precede the predicate definition

:- dynamic(you_have/1),
dynamic(location/2),
dynamic(is_closed/1),
dynamic(is_open/1).

CS 316 (S. D. Bruda) Winter 2023 24 / 28

ADVENTURE GAME (CONT’D)

Moving around:
goto(X) :-

location(you,L),
(connect(L,X); connect(X,L)),
retract(location(you,L)),
assert(location(you,X)),
write(’ You are in the ’),
write(X), nl.

goto(X) :- write(’ You cannot get there ’), nl.

Picking up the egg:
pick(egg) :-

location(you,duck_pen),
not you_have(egg),
assert(you_have(egg)),
write(’ You picked the egg ’), nl.

pick(X) :- write(’ There is nothing to pick ’), nl.

CS 316 (S. D. Bruda) Winter 2023 25 / 28

ADVENTURE GAME (CONT’D)

Opening the gate:
open(gate) :-

location(you,yard),
is_closed(gate),
retract(is_closed(gate)),
assert(is_open(gate)),
write(’ Opened. ’), nl.

open(X) :- write(’ You cannot open that ’), nl.

How the other creatures react:
ducks :-

is_opened(gate),
retract(location(ducks,duck_pen)),
assert(location(ducks,yard)).

ducks.

fox :-
location(ducks,yard),
location(you,house),
write(’ The fox has taken a duck ’), nl.

fox.

CS 316 (S. D. Bruda) Winter 2023 26 / 28

ADVENTURE GAME (CONT’D)

The main loop:
go :- done.
go :-

write(’>>’),
read(X),
call(X),
go.

done :-
location(you,house),
you_have(egg),
ducks, fox,
write(’ Thanks for getting the egg. ’), nl.

CS 316 (S. D. Bruda) Winter 2023 27 / 28



SAMPLE INTERACTION

?- go.
>>goto(yard).
You are in the yard
>>goto(duck_pen).
You cannot get there from here
>>pick(egg).
There is nothing to pick
>>open(gate).
Opened.
>>goto(duck_pen).
You are in the duck_pen
>>pick(egg).
You picked the egg
>>goto(house).
You cannot get there from here
>>goto(yard).
You are in the yard
>>goto(house).
You are in the house
The fox has taken a duck
Thanks for getting the egg.
yes

CS 316 (S. D. Bruda) Winter 2023 28 / 28


