CS 316: Prolog

Stefan D. Bruda

Winter 2023

SYNTAX

PROLOG

Widely used in Europe and Japan
Basis of the 5-th Generation project
FOL inference system

Knowledge base represented using Horn clauses
e Program: set of (Horn) clauses.
o Input data: queries (i.e., FOL sentences to be proved)
@ Output: failure or success + variable bindings
Uses input modus ponens for proofs
@ more precisely, depth-first, left-to-right backward chaining
o returns on request all the possible solutions

@ Uses database semantics instead of the general FOL semantics

CS 316 (S. D. Bruda) Winter 2023 1/28

DATABASE SEMANTICS

@ Atoms: constants (including function names and predicate names)

o Everything not starting with a capital letter or underscore, and everything
surrounded by simple quotes is an atom

@ Variables: everything starting with a capital letter or underscore

@ Convenient notation for lists:
.(a,b) ~ [A|B] .(Joe, .(Jack, .(Jill, [])))) ~ [joe, jack, jill].

@ Clauses: facts

parent (cecil, dave) .
parent (cecil,eric).

parent (ann, bob) .
parent (ann, cecil) .

and rules (with all variables universally quantified)

ancestor (A,B) :- parent (A,B).
ancestor (A,C) :— ancestor(A,B), ancestor (B,C).

@ Queries: FOL sentences (with all variables existentially quantified)

CS 316 (S. D. Bruda) Winter 2023 2/28

@ Suppose Richard has two brothers, John and Geofrey:

Brother(John, Richard) A Brother(Geoffrey, Richard)

o This assertion is always true in a model where Richard has one brother, so
we need to add John # Geoffrey

@ The sentence does not rule out that Richard has more than two brothers

@ The correct assertion therefore is:

Brother(John, Richard) A Brother(Geoffrey, Richard) A
John #+ Geoffrey N
V x Brother(x, Richard) = (x = JohnV x = Geoffrey)
e Things get complex pretty fast, translating knowledge into knowledge bases
becomes exceedingly difficult

@ We can use a semantics that provides for more straightforward
expressions: database semantics

CS 316 (S. D. Bruda) Winter 2023 3/28

DATABASE SEMANTICS (CONT'D) - B EXAMPLE

@ Queries:
?— [memb]. % consult (memb) .
e FOL: Yes
. . - —Member(a, []) ?— memb (X, [1,2,3]).
@ Unique-names assumption: every constant symbol refers to a distinct Member(a, .(a, b))
object Member(a, c) = X =1
o Breaks down skolemization but makes life easier otherwise Member(a, .(b, c))
@ Domain closure: no model contains more domain elements than those Yes
named in constant symbols o Program (file “memb . p1”): ?- memb (X, [1,2,3]).
o Makes model checking feasible (but still very complex
g (but y complex) . memb (3, . (A,B)) . X=1;
@ Closed world assumption: whatever is not known to be true is assumed memb (3, . (B,C)) :- memb (A,C) .
false X =2 ;
...or... ;
memb (A, [A|B]) . X =3 ;
memb (A, [B|C]) :— memb(A,C).
No
?_
CS 316 (S. D. Bruda) Winter 2023 4/28 CS 316 (S. D. Bruda) Winter 2023 5/28

PROOF TREES -~ ll PROOF TREES (CONT'D)

@ Yet another family relation:
@ A family tree:

ancestor (X,Y) :— parent (X,Y).
parent (ann, bob) . parent (ann, calvin) . ancestor (X,Y) :- parent(X,Z), ancestor(Z,Y).
parent (bob, dave) . parent (dave, helen) . ancestor(X.Y)

parent(X,Y)

parent(ann,bob) parent(ann,calvin) parent(bob,dave) parent(dave,helen) parent(X,Y) parent(X,Z) (ancestor(Z,Y)

@ Other family relations: @ A person is happy if she is healthy, wealthy, or wise:
grandparent (X,Y) :- parent (X,Z), parent (Z,Y). happy (Smb) :- person (Smb), happy (Smb) .
siblings (X,Y) :— parent (Z,X),parent (Z,Y), not (X = Y). happy (Smb) :- person(Smb),healthy (Smb) .

grandparent(X,Y) siblings(X,Y) happy (Smb) :- person(Smb),wise (Smb) .
happy(Smb)
parent(X,Z) parent(Z,Y) parent(Z,X) parent(Z,Y) not(X=Y) /

person(Smb) happy(Smb) person(Smb) healthy(Smb) person(Smb) wealthy(Smb)

CS 316 (S. D. Bruda) Winter 2023 6/28 CS 316 (S. D. Bruda) Winter 2023 7/28

BACKTRACKING IMPLEMENTATION - NUMERICAL COMPUTATIONS

call Exit Call Exit @ Some functions are also defined as infix operators
@ e.g., +(1,2) can be written 1+2
Fail Redo Fail Redo i i i . .
@ There are some functions and predicates with predefined meaning (e.g.,
parent(X,Z) parent(Z,Y) . .
usual relational comparison for numbers)
grandparent(X.Y) fail @ Built-in predicate is for arithmetic
X/ —
call oxit Z/SZS ?- X o= 1+2.
redo’//l call \ ‘\Z/dave
Z/calvin X/ann
exit parent(Z.Y)

Ca”
Z/bob
parent(X,Z) & X/ann
Z/bob
call
exit
/
Z/calvi
cavin parent(bob,dave)

parent(ann,calvin) parent(ann,bob) parent(dave,helen)

CS 316 (S. D. Bruda) Winter 2023 8/28 CS 316 (S. D. Bruda) Winter 2023 9/28

NUMERICAL COMPUTATIONS - | KNIGHTS AND THEIR TOUR

% The board size is given by the predicate size/1:
@ Some functions are also defined as infix operators size(5) .
@ e.g., +(1,2) can be written 1+2
@ There are some functions and predicates with predefined meaning (e.g.,
usual relational comparison for numbers)

oe

The position of the knight is represented by the function
% pos(X,Y). There are 8 possible moves in the middle:
move (pos (I,J), pos(K,L) :— K= 1I+41, L = J-2.

))

@ Built-in predicate is for arithmetic move (pos (I,J), pos(K,L)) :- K = I+l, L = J+2.
X = 142. move (pos (I,J), pos(K,L)) - K= 1I+2, L = J+1.
move (pos (I,J), pos(K,L)) - K= 1I+2, L = J-1.

X = 1+2 ;
move (pos (I,J), pos(K,L)) - K= 1I-1, L = J+2.
move (pos (I,J), pos(K,L)) - K=1I-1, L = J-2.
No move (pos (I,J), pos(K,L)) - K =1I-2, L = J+1.
move (pos (I,J), pos(K,L)) - K=1I-2, L = J-1.

CS 316 (S. D. Bruda) Winter 2023 10/28 CS 316 (S. D. Bruda) Winter 2023 11/28

KNIGHTS AND THEIR TOUR <" KNIGHTS AND THEIR TOUR (CONT’D)

o)

% The board size is given by the predicate size/1:

size(5).

% The position of the knight is represented by the function ?— [knights].

% pos(X,Y). There are 8 possible moves in the middle: % knights compiled 0.00 sec, 336 bytes
move (pos (I,J), pos(K,L)) :— K is I+1, L is J-2.

move (pos (I,J), pos(K,L)) :— K is I+1, L is J+2. Yes

move(pOS(IrJ), pOS(K,L)) :— K :?_S I+2, L :?.S J+1. ?2— searchl (pos(olo),pos(1’2),M) .
move (pos (I,J), pos(K,L)) :— K is I+2, L is J-1.

move (pos (I,J), pos(K,L)) :— K is I-1, L is J+2. _

move (pos (I,J), pos(K,L)) :— K is I-1, L is J-2. M = [pos(l, 2)]

move (pos (I,J), pos(K,L)) :— K is I-2, L is J+1.

move (pos (I,J), pos(K,L)) :- K is I-2, L is J-1.

% However, if the knight is somwhere close to board’s margins,
% some moves might fall out of the board:
inside (pos(A,B)) :—- size(Max), A > 0, A =< Max, B > 0, B =< Max.

searchl (A,A, []) .
searchl (A,B, [X|Mvs]) :— move(A,X), inside(X), searchl (X,B,Mvs).

CS 316 (S. D. Bruda) Winter 2023 12/28 CS 316 (S. D. Bruda) Winter 2023 13/28

KNIGHTS AND THEIR TOUR (CONT’D) -~ l| KNIGHTS AND THEIR TOUR (CONT’D)
search(A,B,R) :- search_aux(A,B, [A],R).
?- [knights]. search_aux(%Z,%,L,R) :- reverse(L,R).
% knights compiled 0.00 sec, 336 bytes search_aux(X,Y,L,R) :— move(X,Z), 1inside(Z),
\+ member (zZ,L),
Yes search_aux(Z,Y, [Z|L],R).
?— searchl (pos(0,0),pos(1,2),M).
...and then:

M = ll 2 7
[pos ()] ?— search (pos(0,0),pos(1,2),M).

ERROR: Out of local stack

Exception: (16,218) move (pos(5, 2), _G116577) ? abort M = [pos(0, 0), pos(l, 2)] ;
$ E tion Aborted
i xecution Aborte M = [pos (0, 0), pos(2, 1), pos(3, 3), pos(4, 1), |...]1 ;
M = [pos (0, 0), pos(2, 1), pos(3, 3), pos(4, 1), [...1 ;

...and so on (about 127 solutions!)

CS 316 (S. D. Bruda) Winter 2023 14/28 CS 316 (S. D. Bruda) Winter 2023 15/28

NEGATION AS FAILURE

Map colouring: @ Negation in Prolog: not /1 or \+/1

% problem instance @ Recall that Prolog assumes the closed world paradigm; the negation is
border (a,b) . border (a,c) . border (d, e) . border (b, e) . therefore different from logical negation:
border (a,d) . border (b, c) . border (e, c) . border(d, c) .
?— member (X, [1,2,3]).
adj(X,Y) :—- border(X,Y). X=1;
adj (X,Y) :- border(Y,X). X =2 ;
X =3 ;
colour (X) :- member (X, [red,green,blue]). No
colour_map ([],Colouring, Colouring) . ?— not (member (X, [1,2,3]1)) .
colour_map ([Country|Countries], Colouring, R) :-— No
colour (X), \+ conflict (Country,X,Colouring),

colour_map (Countries, [colour (X, Country) |Colouring],R) . ?— not (not (member (X, [1,2,3])))
- 4 14 14 .

% violates constraint? X = _G6332

conflict (Country, X, Colouring) :-— No
adj (Country,Countryl), % more efficient if adj/2 is first @ not/1 fails upon resatisfaction (a goal can fail in only one way)
member (colour (X, Countryl), Colouring) . @ not/1 does not bind variables
CS 316 (S. D. Bruda) Winter 2023 16/28 CS 316 (S. D. Bruda) Winter 2023 17/28

NEGATION IN CASE SELECTIONS NEGATION IN CASE SELECTIONS

positive(X) :- X > 0. ?— sign(1,X). positive(X) :- X > 0. ?- sign(l,X).
negative (X) :— X < 0. negative (X) :— X < 0.
X =+ ; X =+
sign(X,+) :— positive (X). sign(X,+) :- positive(X).
sign(X,-) :— negative (X). sign (X, -) :—- negative (X). X =0 ;
sign(X,0). sign(X,0).
No
signl (X, +) :- positive (X). ?- signl(1,X).
signl (X, -) :- negative (X).
signl (X,0) :- not (positive (X)), X =+ ;
not (negative (X)) .
No

CS 316 (S. D. Bruda) Winter 2023 18/28 CS 316 (S. D. Bruda) Winter 2023 19/28

MODIFYING THE SEARCH SPACE

The ! /0 predicate (pronounced “cut”) does not allow backtracking over it. All
attempts to redo goals to the left of the cut fail.

@ Commit:
sign2 (X, +) :— positive (X), [].
sign2 (X, -) :—- negative (X), [].
sign2 (X, 0) .

@ Succeed once:

member (X, [X|_1).
member (X, [_|Y]) :— member (X,Y).

membchk (X, [X]|_]) := .
membchk (X, [_|Y]) :- membchk(X,Y).

CS 316 (S. D. Bruda) Winter 2023 20/28

AN ADVENTURE GAME

@ Succeed once (contd):

factl(1,1).

factl (N, R) - N1 is N-1, factl(N1,R1), R is N=*RI1.
fact2(1,1).

fact2(N,R) :— N>1, N1 is N-1, fact2(N1,R1l), R is NxR1l.
fact3(1,1) :— !.

fact3(N,R) :— N1 is N-1, fact3(N1l,R1), R is NxRl.

@ Fail goal now

o An apparently useless predicate: fail/0 always fails
not (P) :— P, !, fail.
not (P) .

@ Another useful predicate: call/1.

@ call (P) behaves as if P were passed as a goal to the interpreter

not (P) :— call(p), !, fail.
not (P) .

CS 316 (S. D. Bruda) Winter 2023 21/28

MODIFYING THE KNOWLEDGE BASE

@ Consider the following knowledge base:

location
location
location
location

egg,duck_pen) .
ducks, duck_pen) .
fox,woods) .

you, house) .

—_ e~ o~ o~

connect (yard, house) .
connect (yard, woods) .

is_closed(gate) .
connect (duck_pen,yard) :—- is_open(gate).

@ We want to move around, be able to open and close the gate, pick the
egg, and so on

@ In order to do this we need to modify the knowledge base dynamically

CS 316 (S. D. Bruda) Winter 2023 22/28

@ Adding a fact to the knowledge base:

@ assert adds the fact given as argument somewere (implementation
dependent)

@ asserta adds the fact given as argument at the beginning of the knowledge
base

@ assertz adds the fact given as argument at the end

e all variants succeed only once

@ Removing a fact from the knowledge base:

o retract removes one instance that unifies with the argument
@ removes one more instance at each redo attempt
o fails when no removal is possible

CS 316 (S. D. Bruda) Winter 2023 23/28

CONVINCING THE KNOWLEDGE BASE TO ALLOW ADVENTURE GAME (CONT’D)
e

CHANGES

@ Moving around:

goto (X) :-
. location(you, L),
@ All the industrial grade PROLOG implementations compile the knowledge (connect (I, X) ; connect (X,TL)),
base as to increase the speed of retrieving facts from it retract (location (you, L))
o SWI PROLOG is one such an example assert (location (you, X)),
@ In these variants, you need to specify which facts are changeable at run write(’ You are in the '),
time write(X), nl.
o These predicates will be stored separately, in an un-optimized fashion goto(X) :— write(’ You cannot get there '), nl.
o The dynamic declaration must precede the predicate definition @ Picking up the egg:
:— dynamic (you_have/1), pick (egg) :-
dynam}c(}ocatlon/Z), location (you, duck_pen),
dynamic (is_closed/1), not you_have (egg)
. . — 14
dynamic (is_open/1) . assert (you_have (egqg)),
write(’ You picked the egg '), nl.
pick(X) :—- write(’ There is nothing to pick "), nl.

CS 316 (S. D. Bruda) Winter 2023 24/28 CS 316 (S. D. Bruda) Winter 2023 25/28

pe:

ADVENTURE GAME (CONT’D) -~ | ADVENTURE GAME (CONT’D)

@ Opening the gate:
open (gate) :-—

location(you,yard), ° Thernamloop:
is_closed(gate),
retract (is_closed(gate)), go :- done.
assert (is_open (gate)), go -
write(’ Opened. '), nl. write (' >>"),
open (X) :— write(’ You cannot open that '), nl. read (X),
@ How the other creatures react: call (X),
ducks :- go.
is_opened (gate),
retract (location (ducks, duck_pen)), done :-
assert (location (ducks, yard)) . location (you, house),
ducks. you_have (eqgqg) ,
ducks, fox,
fox :- write (’ Thanks for getting the egg. '), nl.

location (ducks, yard),
location (you, house),
write (’ The fox has taken a duck ’), nl.
fox.
CS 316 (S. D. Bruda) Winter 2023 26/28 CS 316 (S. D. Bruda) Winter 2023 27/28

SAMPLE INTERACTION

?- go.
>>goto (yard) .
You are in the

yard

>>goto (duck_pen) .

You cannot get
>>pick (egg) .

there from here

There is nothing to pick

>>open (gate) .
Opened.

>>goto (duck_pen) .

You are in the
>>pick (egg) .
You picked the
>>goto (house) .
You cannot get
>>goto (yard) .
You are in the
>>goto (house) .
You are in the

duck_pen

€gg

there from here
yard

house

The fox has taken a duck
Thanks for getting the egg.

yes

CS 316 (S. D. Bruda)

Winter 2023

28/28

