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INDEPENDENCE

Absolute independence:
Inference from joint distributions: huge space (and thus time) complexity, but
Two random variables A B are (absolutely) independent iff P(A|B) = P(A),
i.e., P(A,B) = P(A|B)P(B) = P(A)P(B), and
If n Boolean variables are independent, the full joint is
P(X1, . . . ,Xn) =

∏
i P(Xi), i.e., can be specified by just n numbers; but

Absolute independence is a very strong requirement, rarerly met

Relative independence:
If I have a cavity, the probability that the probe catches does not depend on
whether I have a toothache:

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

i.e., Catch is conditionally independent of Toothache given Cavity
The same independence holds if I haven’t got a cavity:

P(Catch|Toothache,¬Cavity) = P(Catch|¬Cavity)
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BELIEF NETWORKS

A simple, graphical notation for conditional independence assertions and
hence for compact specification of full joint distributions

A set of nodes, one per variable
A directed, acyclic graph (of “direct influences”)
A conditional distribution for each node given its parents: P(Xi |Parents(Xi))
In the simplest case, conditional distribution represented as a conditional
probability table

I’m at work, neighbor John
calls to say my alarm is
ringing, but neighbor Mary
doesn’t call. Sometimes the
alarm is set off by minor earth-
quakes. Is there a burglar?
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BELIEF NETWORKS (CONT’D)

A belief network provides a complete description of the domain; if Xj is
not a parent of Xi then they are conditionally independent, thus:

P(Xi |X1, . . . , Xi−1) = P(Xi |Parents(Xi))

More compact than a matrix, so we solve the space problem
Computing probabilities:

P(J ∧ M ∧ A ∧ ¬B ∧ ¬E) =
P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) =
0.90 × 0.70 × 0.001 × 0.999 × 0.998
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INCREMENTAL CONSTRUCTION OF BELIEF NETWORKS

A belief network is a correct representation of the domain only if each
node is conditionally independent of it’s predecessors (in node ordering),
given its parents

e.g., the fact that Mary calls certainly depends on whether there is a
burglary, but is not directly influenced by it (influenced only by the alarm
sounding or not)

P(M|J,A,E ,B) = P(M|A)
in general,

P(Xi |X1, . . . , Xi−1) = P(Xi |Parents(Xi))

Incremental construction:
1 Choose the set of variables X that describes the domain
2 Choose an ordering ⟨X1,X2, . . . ,Xn⟩ for X
3 For i from 1 to n do

1 Add a node for Xi to the network
2 Choose as parents for this node some minimal set of nodes such that it holds

that P(Xi |X1, . . . , Xi−1) = P(Xi |Parents(Xi ))

CS 316 (S. D. Bruda) Winter 2023 4 / 11

INCREMENTAL CONSTRUCTION (CONT’D)

The node ordering does matter
Compare the orderings

B,E ,A, J,M original construction

M, J,A,B,E two more edges

M, J,E ,B,A same complexity as the full joint distribution!!

All the above networks represent the same joint distribution, one better than
the others

The correct order of nodes is to cosider the “root causes” first, then the
variables they influence directly, and so on
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HIDDEN VARIALBLES

Initial evidence: engine won’t start
Testable variables (thin ovals)
Diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

CS 316 (S. D. Bruda) Winter 2023 6 / 11

EXACT INFERENCE IN BELIEF NETWORKS

Simple queries: compute posterior marginal P(Xi |E = e)
e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Inference by enumeration: rewrite full joint entries using products of
entries in the node tables

Simple query on the burglary network:

P(B|J = true,M = true) = P(B, J = true,M = true)/P(J = true,M = true)

= αP(B, J = true,M = true)

= α
∑

e

∑

a

P(B, e, a, J = true,M = true)

Rewrite full joint entries using product of CPT entries:

P(B|J = true,M = true)

= α
∑

e

∑

a

P(B = true)P(e)P(a|B = true, e)P(J = true|a)P(M = true|a)

= αP(B = true)
∑

e

P(e)
∑

a

P(a|B = true, e)P(J = true|a)P(M = true|a)

CS 316 (S. D. Bruda) Winter 2023 7 / 11



INFERENCE BY ENUMERATION

ENUMERATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . ,Xn)
Q(X)← a distribution over X

for each value xi of X do
extend e with value xi for X
Q(xi)←ENUMERATEALL(VARS[bn],e)

return NORMALIZE(Q(X))

ENUMERATEALL(vars,e) returns a real number
if EMPTY?(vars) then return 1.0
else do

Y← FIRST(vars)
if Y has value y in e
then return P(y |Parents(Y ))× ENUMERATEALL(REST(vars),e)
else return

∑
y P(y |Parents(Y ))× ENUMERATEALL(REST(vars),ey )

where ey is e extended with Y = y
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THE COMPLEXITY OF EXACT INFERENCE

For polytrees (at most one path
between any two nodes): linear in
the size of the network
For multiply connected networks
(dags): exponential

Special case: inference in
propositional logic
So exact inference is NP-hard
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CLUSTERING ALGORITHMS

Variable elimination is simple and efficient
It can be however less efficient than possible in multiply connected
networks (repeat computations)
Improvement: clustering

Basic idea: join individual nodes so that the network becomes a polytree
Example: two nodes with boolean variables are replaced by a “meganode”
with one variable that can take the values tt , tf , ft , ff .
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CLUSTERING ALGORITHMS (CONT’D)

Sprinkler + Rain:
P(S + R)

C tt tf ft ff
t .08 .02 .72 .18
f .10 .40 .10 .40

Wet grass:
S + R P(W )

t t .99
t f .90
f t .90
f f .00

Meganodes can have shared variables
A special purpose inference algorithm is needed

Takes a form similar to constraint propagation
Linear time (with careful bookkeeping)
Still an NP-hard problem though
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