PROBABILISTIC REASONING IN FOL

CS 316: Probabilistic Reasoning in First-Order Logic

Stefan D. Bruda

Winter 2023

- Set of possible worlds (be they represented as a full joint distribution or belief network)
- Each world ω has a probability $P(\omega)$
- Taking any sentence ϕ we can compute its probability:

$$extstyle P(\phi) = \sum_{\omega:\phi ext{ is true in }\omega} extstyle P(\omega)$$

- Problem?
 - FOL instoduces an infinite set of possible worlds!
 - Possible solution: unique names assumption + domain closure = database semantics

RELATIONAL PROBABILITY MODELS (RPM)

- Database semantics (ensures the finitness of possible worlds)
 - Except that the closed world assumption is eliminated
 - Probabilistically it does not make sense that all unknown fact are false!
- RPM have constants, functions, and predicates (considered Boolean functions)
- Each function has a type signature

Honest : Customer $\longrightarrow \{true, false\}$ Kindness : Customer $\longrightarrow \{1, 2, 3, 4, 5\}$

 $\textit{Quality} \quad : \quad \textit{Book} \longrightarrow \{1,2,3,4,5\}$

Recommendation : Customer \times Book $\longrightarrow \{1, 2, 3, 4, 5\}$

- Random variables are obtained by the instantiating each function with each possible argument
 - Each type has finitely many instances ⇒ number of random variables is finite

3 316 (S. D. Bruda) Winter 2023 1 / 7

RPM (CONT'D)

 Dependencies between random variables are stated as one dependency statement for each function

 $\begin{array}{ccc} \textit{Honest}(c) & \sim & \langle 0.99, 0.01 \rangle \\ \textit{Kindness}(c) & \sim & \langle 0.1, 0.1, 0.2, 0.3, 0.3 \rangle \\ \textit{Quality}(b) & \sim & \langle 0.05, 0.2, 0.4, 0.2, 0.15 \rangle \\ \textit{Recommendations}(c,b) & \sim & \textit{RecCPT}(\textit{Honets}(c), \textit{Kindness}(c), \\ & & \textit{Quality}(b)) \end{array}$

- \bullet RecCPT is a conditional distribution with 2 \times 5 \times 5 rows
- Conditional expressions are possible:

 $Recommendations(c,b) \sim \quad \textbf{if } Honest(c) \ \textbf{then} \\ \qquad \qquad HonestRecCPT(\textit{Kindness}(c), \textit{Quality}(b)) \\ \qquad \qquad \textbf{else} \ \langle 0.4, 0.1, 0.0, 0.1, 0.4 \rangle$

just a more compact way of representing the conditional distribution RecCPT

• Instantiate these dependencies \Rightarrow a belief network = the semantics of the RPM

CS 316 (S. D. Bruda) Winter 2023 2 / 7 CS 316 (S. D. Bruda) Winter 2023 3 / 7

- Eliminating the closed world assumption
 - Real-life problem: relational uncertainty
 - How can we ascertain that Fan(C1, Author(B1)) if the author of B1 is unknown?
 - We reason about all the possible authors!
 - Suppose there are *n* possible authors *A*1,..., *An*
 - Then Author(B1) is a random variable with possible values A1,..., An
 - Works well many times, but also fails many other times, especially when the set of possible individuals is unknown
 - This can often be fixed using a random variable defined over sets of individuals
- Other conditions:
 - No dependency must be cyclic (since a belief network cannot have cycles)
 - Recursive dependencies are not supported (since this will generate infinite paths in the belief network)

- Unrolling:
 - Collect constants and evidence
 - Construct the dependencies
 - Build the associated belief network
 - Apply inference in the belief network
- The resulting networks are very large
 - The usual solution is to construct the network on the fly rather than at the beginning
 - Many of the factors constructed during variable elimination will be identical
 - Efficient caching of previous results improves the algorithm dramatically

CS 316 (S. D. Bruda) Winter 2023

OTHER APPROACHES TO REASONING WITH UNCERTAIN DATA

- Major apparent discrepancy between our mind (qualitative) and the probability theory (quantitative)
 - However, no better solution is known
- Dealing with ignorance: interval-valued degrees of belief (the Dempster-Shafer theory)
- Fuzzy logic allows vagueness (a sentence can be "sort of" true)
 - Vagueness and uncertainty are however orthogonal issues

CS 316 (S. D. Bruda) Winter 2023

Fuzzy Logic

- Is Jim tall? It depends; if he is around 180cm tall, then many people will hesitate
- Instead we can recognize that there are degrees of tallness:
 - the truth value of *Tall(Jim)* is a number between 0 and 1 instead of just true or false
 - Generally to every fact A we assign a degree of truth T(A) (between 0 and 1) T is the fuzzy truth function
- Once the truth value of facts is known the truth value of complex sentences can be established inductively:

$$T(A \wedge B) = \min(T(A), T(B))$$

 $T(A \vee B) = \max(T(A), T(B))$

$$T(\neg A) = 1 - T(A)$$

 All the inference methods work well, but there are problems with relating fuzzy truth with reality:

$$T(Tall(Jim) \land \neg Tall(Jim)) = 0.4 ????$$

CS 316 (S. D. Bruda) Winter 2023 6 / 7 CS 316 (S. D. Bruda) Winter 2023 7 / 7