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ANALYZING NON-RECURSIVE ALGORITHMS

@ To find the running time all we have to do is count steps, carefully
@ Examples:

@ fori=1T1T0 Nndo
j1
while j < ido

J—j+1
e fori=1Tondo

j<n
while j > 1 do

j+j/2
@ algorithm BINSEARCH(x, S, /, h):
i1
j+<h
while i < jdo
m« (i+j)/2
if Sm = x then return m
elseif Sy > x thenj < m—1
elsei«+ m+1

L return —1
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@ Examples:
e fori=1T0 ndo Oo(n?)
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while j < ido
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ANALYZING NON-RECURSIVE ALGORITHMS

@ To find the running time all we have to do is count steps, carefully

@ Examples:
e fori=1T0 ndo Oo(n?)
j1
while j < ido
j—j+1
e fori=1Tondo O(nlog n)

j<n
while j > 1 do

j+j/2
o algorithm BINSEARCH(x, S, /, h): O(log n)
i1
j+<h
while i < jdo
m« (i+j)/2
if Sm = x then return m
elseif Sy > x thenj < m—1
elsei«+ m+1

L return —1
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ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation
@ algorithm BINSEARCH(x, S, /, h): /I T(n)

if / > hthen return -1
else
m<« (I+h)/2
if x == S then return m
else if x < Sp then return BINSEARCH(x, S, [, m—1) // T(n/2)

else return BINSEARCH(x, S, m+ 1, h) /' T(n/2)
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ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation
@ algorithm BINSEARCH(x, S, /, h): /I T(n)

if / > hthen return -1
else
m<« (I+h)/2
if x == S then return m
else if x < Sp then return BINSEARCH(x, S, [, m—1) // T(n/2)

else return BINSEARCH(x, S, m+ 1, h) /' T(n/2)

1

- c n=1 T(n)=T(n/2) +1
T(n) = { T(n/2)+¢ n>1 (1)
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ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation
@ algorithm BINSEARCH(x, S, /, h): /I T(n)

if / > hthen return -1
else
m<« (I+h)/2
if x == S then return m
else if x < Sp then return BINSEARCH(x, S, [, m—1) // T(n/2)

else return BINSEARCH(x, S, m+ 1, h) /' T(n/2)

n)=T(n/2) +1
1)

_Jec n=-1 T(
T(”)*{ T(n/2)+¢ n>1 T(1) =1

@ algorithm MERGESORT(S, /, h):  // T(n)

if | > hthen m<« (I+ h)/2
MERGESORT(/, m) I1'T(n/2)

MERGESORT(m + 1, h) /I T(n/2)

MERGE(/, m, h) /I O(n)
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ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation
@ algorithm BINSEARCH(x, S, /, h): /I T(n)

if / > hthen return -1
else
m<« (I+h)/2
if x == S then return m
else if x < Sp then return BINSEARCH(x, S, [, m—1) // T(n/2)

else return BINSEARCH(x, S, m+ 1, h) /' T(n/2)
B (e n=1 T(n) = T(n/2) + 1
T(”)*{ T(n/2)+¢ n>1 T(1) =1

@ algorithm MERGESORT(S, /, h):  // T(n)
T(n)=2T(n/2)+n

if | > hthen m<« (/+ h)/2 N
MERGESORT(/, m)( )/ /I T(n/2) T(1) =1

MERGESORT(m + 1, h) /I T(n/2)

MERGE(/, m, h) /1 O(n)
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ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation

@ algorithm BINSEARCH(x, S, /, h):

if / > hthen return -1
else
m<« (I+h)/2
if x == S then return m

else return BINSEARCH(x, S, m+ 1, h)

_Jec n=-1 T(
T(”)*{ T(n/2)+¢ n>1 T(

1

@ algorithm MERGESORT(S, /, h):  // T(n)

if | > hthen m<« (/+ h)/2 N
MERGESORT(/, m)( )/ /I T(n/2) T(1) =1

MERGESORT(m + 1, h) /I T(n/2)

MERGE(/, m, h) /1 O(n)

@ T(n)=2T(n—1)+1,T(1) =1 (towers of Hanoi)
@ T(n)=5T(n—1)—-6T(n—2)+1,T(0)=5T(1)=7

Counting Steps and Recurrence Relations (S. D. Bruda)

/I T(n)

else if x < Sp then return BINSEARCH(x, S, [, m—1) // T(n/2)

/I T(n/2)

n)=T(n/2) +1
1)

T(n)=2T(n/2)+n

CS 317, Fall 2024

2/10



SOLVING RECURRENCE RELATIONS

@ Technically all the techniques below produce guesses
o All guesses must be verified by induction
@ Induction
o Calculate a few values until able to make an educated guess
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SOLVING RECURRENCE RELATIONS

@ Technically all the techniques below produce guesses

o All guesses must be verified by induction
@ Induction

o Calculate a few values until able to make an educated guess
@ Forward substitution

e Obtain T(n) for a few values without performing the calculations
o See if a series emerge and guess the general form
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@ Technically all the techniques below produce guesses

o All guesses must be verified by induction
@ Induction

o Calculate a few values until able to make an educated guess
@ Forward substitution

e Obtain T(n) for a few values without performing the calculations
o See if a series emerge and guess the general form

@ Backward substitution

e Expand T(n) repeatedly without performing the calculations
o See if a series emerge and guess the general form
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SOLVING RECURRENCE RELATIONS

@ Technically all the techniques below produce guesses

o All guesses must be verified by induction
@ Induction

o Calculate a few values until able to make an educated guess
@ Forward substitution

e Obtain T(n) for a few values without performing the calculations
o See if a series emerge and guess the general form

@ Backward substitution
e Expand T(n) repeatedly without performing the calculations
o See if a series emerge and guess the general form

@ Summing factors

o Write down the formulae for n, n— 1, n— 2, etc. (or n, n/2, n/4, ...) and
add them up together

o Simplify the sum, hopefully reaching a

o See if a series emerge for T(n) and guess the general form

Counting Steps and Recurrence Relations (S. D. Bruda) CS 317, Fall 2024 3/10



CHARACTERISTIC EQUATION

Definition (homogeneous linear recurrence)

A recurrence of the form apt, + a1tp_1 + asth_o + - - + axt,_x = 0 where k
and a; are constants is called a homogeneous linear recurrence equation

Definition (characteristic equation)

The characteristic equation for the homogeneous linear recurrence equation
atyh + aith—1 + ath2+ -+ atp_k =01is
St g e 2 g =)

Theorem (solution of a homogeneous linear equation)

Let apty + a1th—1 + asth_o + - - - + axty_x = 0 be a homogeneous linear
recurrence equation. If the characteristic equation of this relation has k
distinct solutions ry, r2, . .., r, then the only solution to the recurrence relation
sty =cir' + Card + -+ + Ckly
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION

@ We obtain r from the characteristic equation and then we can determine
the constants ¢; from the base case(s)
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION

@ We obtain r from the characteristic equation and then we can determine
the constants ¢; from the base case(s)

@ Example: T(n) =2T(n—1),T(1) =1
o Rewrite inductive case as a linear recurrence: t, — 2t,_1 = 0
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SOLVING RECURRENCE RELATIONS USING THE

PF oA
CHARACTERISTIC EQUATION "}'

@ We obtain r from the characteristic equation and then we can determine
the constants ¢; from the base case(s)

@ Example: T(n) =2T(n—1),T(1) =1

Rewrite inductive case as a linear recurrence: t, — 2,1 =0

o Characteristic equation: r —2 =0

@ Solve equation, obtaining r = 2

o Therefore we have T(n) = ¢12"
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SOLVING RECURRENCE RELATIONS USING THE

e
CHARACTERISTIC EQUATION ‘-}-

@ We obtain r from the characteristic equation and then we can determine
the constants ¢; from the base case(s)

@ Example: T(n) =2T(n—1),T(1) =1

Rewrite inductive case as a linear recurrence: t, — 2,1 =0

Characteristic equation: r —2 =10

Solve equation, obtaining r = 2

Therefore we have T(n) = ¢2"

From the base case we have T(1) = ¢;2' =1andthus ¢y = 1/2

Therefore T(n) =2""" = O(2")
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION (CONT’D)

@ Note in passing: recall that the solutions of the quadratic equation
ax®> + bx+c=0are

—b+ Vb2 —4ac
X2 = 22

@ Example: T(n)=T(n—1)+ T(n—2),T(0) = T(1) = 1 (Fibonacci
sequence)
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION (CONT’D)

@ Note in passing: recall that the solutions of the quadratic equation
ax®> + bx+c=0are

—b+vb? —4ac
X120 =
2a
@ Example: T(n)=T(n—1)+ T(n—-2),T(0) = T(1) =1 (Fibonacci
sequence)
e Characteristic equation: r" — r"~' — r"2 =0

e Thatis,r>—r—1=0
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION (CONT’D)

@ Note in passing: recall that the solutions of the quadratic equation
ax®> + bx+c=0are

—b+vb? —4ac
X120 =
2a
@ Example: T(n)=T(n—1)+ T(n—-2),T(0) = T(1) =1 (Fibonacci
sequence)
e Characteristic equation: r" — r"~' — r"2 =0

Thatis,r?—r—1=0

Solve as a quadratic equation: ry o = (1 &+ /5)/2

From the base cases ¢; + ¢z = 1 and ¢;(1 + v5)/2 4+ (1 — v5)/2 =1
Therefore ¢i» = (v5 £+ 1)/(2V5)
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION (CONT’D)

@ Note in passing: recall that the solutions of the quadratic equation
ax®> + bx+c=0are

—b+ Vb2 —4ac
X120 =
2a
@ Example: T(n)=T(n—1)+ T(n—-2),T(0) = T(1) = 1 (Fibonacci

sequence)

e Characteristic equation: r" — r"~' — r"2 =0

o Thatis,r”?—r—1=0

e Solve as a quadratic equation: r1» = (1 +/5)/2

o From the base cases ¢; + ¢z = 1 and ¢i(1 + v5)/2 4+ c2(1 — v5)/2 =1

e Therefore ¢i, = (v5 £ 1)/(2V5)

o Thatis:

s (90) 55 (5F)

o Not terribly illuminating. ..

T(n)
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

@ A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation

o For example the equation (r — 2)(r — 5)° = 0 has the solutions r; = 2 with
multiplicity 1 and r, = 5 with multiplicity 3
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

@ A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation

o For example the equation (r — 2)(r — 5)° = 0 has the solutions r; = 2 with
multiplicity 1 and r, = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)

Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then t, = nkr", 0 < k < m are all solutions
to the recurrence and so much be included in the general solution.

@ That is, a solution r with multiplicity k will contribute the following to {,:
con’r"+con'r"+ - 4+ 1™ 1"

] Example: th—7th_1 +15t,_o —9t,_ 3=0,60=0,, =1, =2
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

@ A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation

o For example the equation (r — 2)(r — 5)° = 0 has the solutions r; = 2 with
multiplicity 1 and r, = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)

Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then t, = nkr", 0 < k < m are all solutions
to the recurrence and so much be included in the general solution.

@ That is, a solution r with multiplicity k will contribute the following to {,:
con’r"+con'r"+ - 4+ 1™ 1"

] Example: th—7th_1 +15t,_o —9t,_ 3=0,60=0,, =1, =2
o Characteristic equation: r* —7r2 + 15r —9 =0
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

@ A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation

o For example the equation (r — 2)(r — 5)° = 0 has the solutions r; = 2 with
multiplicity 1 and r, = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)

Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then t, = nkr", 0 < k < m are all solutions
to the recurrence and so much be included in the general solution.

@ That is, a solution r with multiplicity k will contribute the following to {,:
Conlr" +en'r" -+ cp_n™ 1"
] Example: th—7th_1 +15t,_o —9t,_ 3=0,60=0,, =1, =2
o Characteristic equation: r* — 7r2 + 15r —9 =0
e Thatis, (r — 1)(r —3)2 =0and so ry = 1 (multiplicity 1) and . = 3
(multiplicity 2)
o Therefore the general solution is t, = ¢11"7 + ¢23" + c3n3"
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

@ A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation
o For example the equation (r — 2)(r — 5)° = 0 has the solutions r; = 2 with
multiplicity 1 and r, = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)

Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then t, = nkr", 0 < k < m are all solutions
to the recurrence and so much be included in the general solution.

@ That is, a solution r with multiplicity k will contribute the following to {,:
Conlr" +en'r" -+ cp_n™ 1"
] Example: th—7th_1 +15t,_o —9t,_ 3=0,60=0,, =1, =2
o Characteristic equation: r* — 7r2 + 15r —9 =0
e Thatis, (r — 1)(r —3)2 =0and so ry = 1 (multiplicity 1) and . = 3
(multiplicity 2)
o Therefore the general solution is t, = ¢11"7 + ¢23" + c3n3"
e From the base caseswe have ¢ = -1, =1,¢c3=1/3
o Therefore t, = 3" — n3"~' — 1
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NON-HOMOGENEOUS LINEAR RELATIONS

@ General form: apt, + a1fh—1 + @tp—2 + - - + axth—k = f(N)
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NON-HOMOGENEOUS LINEAR RELATIONS

@ General form: apt, + ar1ty—1 + agtn—2 + - - - + akth—k = f(n)
@ No known method to solve them
@ Special case: apt, + ailp—1 + asty_o + -+ + aklh_x = b"p(n), with b
constant and p(n) a polynomial in n
@ Can be transformed into a homogeneous linear recurrence
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NON-HOMOGENEOUS LINEAR RELATIONS

@ General form: apt, + ar1ty—1 + agtn—2 + - - - + akth—k = f(n)
@ No known method to solve them
@ Special case: apt, + ailp—1 + asty_o + -+ + aklh_x = b"p(n), with b
constant and p(n) a polynomial in n
Can be transformed into a homogeneous linear recurrence
Example: t, —3t,_1 =4", =0, t, =4
Replace nwith n — 1: t,_1 — 3t,_p = 4"
Divide the original by 4: 1/4t, — 3/4t, 1 = 4"
Subtract the second version from the first: 1/4t, — 7/4t,—1 + 3t,_2 =0
Homogeneous linear recurrence!
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NON-HOMOGENEOUS LINEAR RELATIONS

@ General form: apt, + ar1ty—1 + agtn—2 + - - - + akth—k = f(n)
@ No known method to solve them
@ Special case: apt, + ailp—1 + asty_o + -+ + aklh_x = b"p(n), with b
constant and p(n) a polynomial in n
Can be transformed into a homogeneous linear recurrence
Example: t, —3t,_1 =4", =0, t, =4
Replace nwith n — 1: t,_1 — 3t,_p = 4"
Divide the original by 4: 1/4t, — 3/4t, 1 = 4"
Subtract the second version from the first: 1/4t, — 7/4t,—1 + 3t,_2 =0
Homogeneous linear recurrence!

Theorem (Non-homogeneous transformation)

A non-homogeneous linear recurrence of the form

aoty + arty—1 + aglh—2 + - - - + akt,_x = b"p(n) can be transformed into an
equivalent homogeneous linear recurrence with the following characteristic
equation: (apr® + air*=1 + axrk=2 + ... 4+ a,r%)(r — b)9+' = 0, where d is the
degree of p(n)

@ Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

@ We may be able to bring the indices closer using a change of variable
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%
e Do not forget to change the variable back when done
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other
@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%

e Do not forget to change the variable back when done
e Example: T(n)=2T(n/2)+1,T(1) =0
@ Would resultin th = t,/2 + 1, not linear
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%
e Do not forget to change the variable back when done
e Example: T(n)=2T(n/2)+1,T(1) =0
@ Would resultin th = t,/2 + 1, not linear
@ However nand n/2 are near each other on a logarithmic scale
@ So we let n = 2 (and so k = log n) and we have: T(2K) = 2T(2k=1) 4-1
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%
e Do not forget to change the variable back when done
e Example: T(n)=2T(n/2)+1,T(1) =0
@ Would resultin th = t,/2 + 1, not linear
However n and n/2 are near each other on a logarithmic scale
So we let n = 2k (and so k = log n) and we have: T(2K) = 2T(2k—1) + 1
With t, = T(2k) we have: ty = 2t_1 + 1
Note thatty = T(2°) =0and t; =2t +1 =1
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other
@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%
e Do not forget to change the variable back when done
e Example: T(n)=2T(n/2)+1,T(1) =0

@ Would resultin th = t,/2 + 1, not linear

@ However nand n/2 are near each other on a logarithmic scale

@ Sowe let n = 2k (and so k = log n) and we have: T(2k) = 2T(2k—1) 1 1
o With t, = T(2k) we have: ty = 24_1 + 1

@ Notethatty =T(2°) =0andty =2ty +1 =1

@ We already know how to solve that, and we obtain ty = ¢12K + ¢, 1%

@ Solving for ty and t; we obtain ¢y = 1 and ¢, = —1

@ Sot, =2K—1
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DOMAIN TRANSFORMATION

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

@ We may be able to bring the indices closer using a change of variable

e Most common change of variable: from n to 2%

e Do not forget to change the variable back when done
e Example: T(n) =2T(n/2)+1,T(1)=0

Would resultin t, = ,/2 + 1, not linear

However n and n/2 are near each other on a logarithmic scale

So we let n = 2¥ (and so k = log n) and we have: T(2K) = 2T(2k=1) 4-1
With t, = T(2k) we have: ty = 2t_1 + 1

Note thatty = T(2°) =0and t; =2t +1 =1

We already know how to solve that, and we obtain t, = ¢12k + ¢, 1%
Solving for ty and t; we obtain ¢y = 1 and ¢, = —1

So t, =2k — 1

Finally change the variable back to n by replacing k with log n:
th=T(n)=n-1
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RANGE TRANSFORMATION

@ Sometimes we do not have a linear recurrence because terms are
combined using multiplication

@ We may be able to change multiplication into addition by applying an
operation on both sides

@ Indeed, loga x b =loga+ logh
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RANGE TRANSFORMATION

@ Sometimes we do not have a linear recurrence because terms are
combined using multiplication
@ We may be able to change multiplication into addition by applying an
operation on both sides
o Indeed, loga x b =loga+ logb
o Example: t, =382, t) =1

@ Not linear because of 2_,
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RANGE TRANSFORMATION

@ Sometimes we do not have a linear recurrence because terms are
combined using multiplication

@ We may be able to change multiplication into addition by applying an
operation on both sides

o Indeed, loga x b =loga+ logb
o Example: t, =382, t) =1
@ Not linear because of 2_,
@ Apply log to convert the exponent into a multiplicative constant:
logth = log3 + 2log t,_1,logty = log 1
@ Let by = log th so we have: b, = 2b,_1 + log 3, by = 0, by = 2by + log 3 = log 3
@ Linear recurrence!
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