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ANALYZING NON-RECURSIVE ALGORITHMS

To find the running time all we have to do is count steps, carefully
Examples:

for i = 1 TO n do
j ← 1
while j ≤ i do

. . .

j ← j + 1

O(n2)

for i = 1 TO n do
j ← n
while j > 1 do

. . .

j ← j/2

O(n log n)

algorithm BINSEARCH(x , S, l , h):
i ← l
j ← h
while i ≤ j do

m← (i + j)/2
if Sm = x then return m
else if Sm > x then j ← m − 1
else i ← m + 1

return −1

O(log n)
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ANALYZING RECURSIVE ALGORITHMS

Counting steps in a recursive algorithm produces a recurrence relation
algorithm BINSEARCH(x , S, l , h): // T (n)

if l > h then return -1
else

m← (l + h)/2
if x == Sm then return m

else if x < Sm then return BINSEARCH(x , S, l , m−1) // T (n/2)

else return BINSEARCH(x , S, m + 1, h) // T (n/2)

T (n) =
{

c n = 1
T (n/2) + c′ n > 1

T (n) = T (n/2) + 1
T (1) = 1

algorithm MERGESORT(S, l , h): // T (n)

if l > h then m← (l + h)/2
MERGESORT(l , m) // T (n/2)

MERGESORT(m + 1, h) // T (n/2)
MERGE(l , m, h) // O(n)

T (n) = 2T (n/2) + n
T (1) = 1

T (n) = 2T (n − 1) + 1,T (1) = 1 (towers of Hanoi)
T (n) = 5T (n − 1)− 6T (n − 2) + 1,T (0) = 5,T (1) = 7
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SOLVING RECURRENCE RELATIONS

Technically all the techniques below produce guesses
All guesses must be verified by induction

Induction
Calculate a few values until able to make an educated guess

Forward substitution
Obtain T (n) for a few values without performing the calculations
See if a series emerge and guess the general form

Backward substitution
Expand T (n) repeatedly without performing the calculations
See if a series emerge and guess the general form

Summing factors
Write down the formulae for n, n − 1, n − 2, etc. (or n, n/2, n/4, . . . ) and
add them up together
Simplify the sum, hopefully reaching a
See if a series emerge for T (n) and guess the general form
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CHARACTERISTIC EQUATION

Definition (homogeneous linear recurrence)
A recurrence of the form a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = 0 where k
and ai are constants is called a homogeneous linear recurrence equation

Definition (characteristic equation)
The characteristic equation for the homogeneous linear recurrence equation
a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = 0 is
a0r k + a1r k−1 + a2r k−2 + · · ·+ ak r0 = 0

Theorem (solution of a homogeneous linear equation)
Let a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = 0 be a homogeneous linear
recurrence equation. If the characteristic equation of this relation has k
distinct solutions r1, r2, . . . , rk , then the only solution to the recurrence relation
is tn = c1rn

1 + c2rn
2 + · · ·+ ck rn

k
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION

We obtain r from the characteristic equation and then we can determine
the constants ci from the base case(s)

Example: T (n) = 2T (n − 1),T (1) = 1
Rewrite inductive case as a linear recurrence: tn − 2tn−1 = 0
Characteristic equation: r − 2 = 0
Solve equation, obtaining r = 2
Therefore we have T (n) = c12n

From the base case we have T (1) = c121 = 1 and thus c1 = 1/2
Therefore T (n) = 2n−1 = O(2n)
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SOLVING RECURRENCE RELATIONS USING THE

CHARACTERISTIC EQUATION (CONT’D)

Note in passing: recall that the solutions of the quadratic equation
ax2 + bx + c = 0 are

x1,2 =
−b ±

√
b2 − 4ac

2a

Example: T (n) = T (n − 1) + T (n − 2),T (0) = T (1) = 1 (Fibonacci
sequence)

Characteristic equation: r n − r n−1 − r n−2 = 0
That is, r 2 − r − 1 = 0
Solve as a quadratic equation: r1,2 = (1 ±

√
5)/2

From the base cases c1 + c2 = 1 and c1(1 +
√

5)/2 + c2(1 −
√

5)/2 = 1
Therefore c1,2 = (

√
5 ± 1)/(2

√
5)

That is:

T (n) =
√

5 + 1
2
√

5

(
1 +

√
5

2

)n

+

√
5 − 1
2
√

5

(
1 −

√
5

2

)n

Not terribly illuminating. . .
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

A solution of an equation is said to have multiplicity m if it appears m
times in the list of solutions to that equation

For example the equation (r − 2)(r − 5)3 = 0 has the solutions r1 = 2 with
multiplicity 1 and r2 = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)
Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then tn = nk rn, 0 ≤ k < m are all solutions
to the recurrence and so much be included in the general solution.

That is, a solution r with multiplicity k will contribute the following to tn:
c0n0rn + c1n1rn + · · ·+ cm−1nm−1rn

Example: tn − 7tn−1 + 15tn−2 − 9tn−3 = 0, t0 = 0, t1 = 1, t2 = 2
Characteristic equation: r 3 − 7r 2 + 15r − 9 = 0
That is, (r − 1)(r − 3)2 = 0 and so r1 = 1 (multiplicity 1) and r2 = 3
(multiplicity 2)
Therefore the general solution is tn = c11n + c23n + c3n3n

From the base cases we have c1 = −1, c2 = 1, c3 = 1/3
Therefore tn = 3n − n3n−1 − 1
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NON-HOMOGENEOUS LINEAR RELATIONS

General form: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = f (n)

No known method to solve them
Special case: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n), with b
constant and p(n) a polynomial in n

Can be transformed into a homogeneous linear recurrence
Example: tn − 3tn−1 = 4n, t0 = 0, t1 = 4
Replace n with n − 1: tn−1 − 3tn−2 = 4n−1

Divide the original by 4: 1/4tn − 3/4tn−1 = 4n−1

Subtract the second version from the first: 1/4tn − 7/4tn−1 + 3tn−2 = 0
Homogeneous linear recurrence!

Theorem (Non-homogeneous transformation)
A non-homogeneous linear recurrence of the form
a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n) can be transformed into an
equivalent homogeneous linear recurrence with the following characteristic
equation: (a0r k + a1r k−1 + a2r k−2 + · · ·+ ak r0)(r − b)d+1 = 0, where d is the
degree of p(n)

Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part

Counting Steps and Recurrence Relations (S. D. Bruda) CS 317, Fall 2024 8 / 10



NON-HOMOGENEOUS LINEAR RELATIONS

General form: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = f (n)
No known method to solve them

Special case: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n), with b
constant and p(n) a polynomial in n

Can be transformed into a homogeneous linear recurrence

Example: tn − 3tn−1 = 4n, t0 = 0, t1 = 4
Replace n with n − 1: tn−1 − 3tn−2 = 4n−1

Divide the original by 4: 1/4tn − 3/4tn−1 = 4n−1

Subtract the second version from the first: 1/4tn − 7/4tn−1 + 3tn−2 = 0
Homogeneous linear recurrence!

Theorem (Non-homogeneous transformation)
A non-homogeneous linear recurrence of the form
a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n) can be transformed into an
equivalent homogeneous linear recurrence with the following characteristic
equation: (a0r k + a1r k−1 + a2r k−2 + · · ·+ ak r0)(r − b)d+1 = 0, where d is the
degree of p(n)

Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part

Counting Steps and Recurrence Relations (S. D. Bruda) CS 317, Fall 2024 8 / 10



NON-HOMOGENEOUS LINEAR RELATIONS

General form: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = f (n)
No known method to solve them

Special case: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n), with b
constant and p(n) a polynomial in n

Can be transformed into a homogeneous linear recurrence
Example: tn − 3tn−1 = 4n, t0 = 0, t1 = 4
Replace n with n − 1: tn−1 − 3tn−2 = 4n−1

Divide the original by 4: 1/4tn − 3/4tn−1 = 4n−1

Subtract the second version from the first: 1/4tn − 7/4tn−1 + 3tn−2 = 0
Homogeneous linear recurrence!

Theorem (Non-homogeneous transformation)
A non-homogeneous linear recurrence of the form
a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n) can be transformed into an
equivalent homogeneous linear recurrence with the following characteristic
equation: (a0r k + a1r k−1 + a2r k−2 + · · ·+ ak r0)(r − b)d+1 = 0, where d is the
degree of p(n)

Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part

Counting Steps and Recurrence Relations (S. D. Bruda) CS 317, Fall 2024 8 / 10



NON-HOMOGENEOUS LINEAR RELATIONS

General form: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = f (n)
No known method to solve them

Special case: a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n), with b
constant and p(n) a polynomial in n

Can be transformed into a homogeneous linear recurrence
Example: tn − 3tn−1 = 4n, t0 = 0, t1 = 4
Replace n with n − 1: tn−1 − 3tn−2 = 4n−1

Divide the original by 4: 1/4tn − 3/4tn−1 = 4n−1

Subtract the second version from the first: 1/4tn − 7/4tn−1 + 3tn−2 = 0
Homogeneous linear recurrence!

Theorem (Non-homogeneous transformation)
A non-homogeneous linear recurrence of the form
a0tn + a1tn−1 + a2tn−2 + · · ·+ ak tn−k = bnp(n) can be transformed into an
equivalent homogeneous linear recurrence with the following characteristic
equation: (a0r k + a1r k−1 + a2r k−2 + · · ·+ ak r0)(r − b)d+1 = 0, where d is the
degree of p(n)

Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part

Counting Steps and Recurrence Relations (S. D. Bruda) CS 317, Fall 2024 8 / 10



DOMAIN TRANSFORMATION

Sometimes we do not have a linear recurrence because the indices are
nowhere near each other
We may be able to bring the indices closer using a change of variable

Most common change of variable: from n to 2k

Do not forget to change the variable back when done
Example: T (n) = 2T (n/2) + 1,T (1) = 0

Would result in tn = tn/2 + 1, not linear
However n and n/2 are near each other on a logarithmic scale
So we let n = 2k (and so k = log n) and we have: T (2k ) = 2T (2k−1) + 1
With tk = T (2k ) we have: tk = 2tk−1 + 1
Note that t0 = T (20) = 0 and t1 = 2t0 + 1 = 1
We already know how to solve that, and we obtain tk = c12k + c21k

Solving for t0 and t1 we obtain c1 = 1 and c2 = −1
So tk = 2k − 1
Finally change the variable back to n by replacing k with log n:
tn = T (n) = n − 1
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RANGE TRANSFORMATION

Sometimes we do not have a linear recurrence because terms are
combined using multiplication
We may be able to change multiplication into addition by applying an
operation on both sides

Indeed, log a × b = log a + log b

Example: tn = 3t2
n−1, t0 = 1

Not linear because of t2
n−1

Apply log to convert the exponent into a multiplicative constant:
log tn = log 3 + 2 log tn−1, log t0 = log 1
Let bn = log tn so we have: bn = 2bn−1 + log 3, b0 = 0, b1 = 2b0 + log 3 = log 3
Linear recurrence!
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