
Data Structures

Stefan D. Bruda

CS 317, Fall 2024



DATA STRUCTURES RECAP

Stack (FILO): push, pop, empty – constant time
Queue (FIFO): insert, delete, empty – constant time
Heaps: implementation of priority queue

Operations: insert (O(log n)), peek (highest priority, O(1)), delete (highest
priority, O(log n))
Tree representation, with children values smaller (maxheap) or larger
(minheap) than the vertex value (weakly sorted)
Most efficiently implemented using arrays
Efficient sorting (heapsort)

Data Structures (S. D. Bruda) CS 317, Fall 2024 1 / 12



DATA STRUCTURES RECAP (CONT’D)

Trees: simple connected graph, one vertex may be designated as root
For a graph T with n vertices the following statements are equivalent:

T is a tree
T is connected and acyclic
T is connected and has n − 1 edges
T is acyclic and has n − 1 edges

Concepts: parent, ancestor, child, descendant, sibling, leaf, internal note

Binary tree: each node had at most two children (left and right)
In a binary tree of height h with n nodes we have h ≥ log2 n (or n ≤ 2h)
Binary tree traversals (O(n) complexity):

algorithm PREORDER(T ):
if ¬EMPTY(T ) then

VISIT(T )
PREORDER(LEFT(T ))
PREORDER(RIGHT(T ))

algorithm INORDER(T ):
if ¬EMPTY(T ) then

INORDER(LEFT(T ))
VISIT(T )
INORDER(RIGHT(T ))

algorithm POSTORDER(T ):
if ¬EMPTY(T ) then

POSTORDER(LEFT(T ))
POSTORDER(RIGHT(T ))
VISIT(T )

Binary search tree: the value in every vertex is larger than all the values
in its left subtree and smaller than all the values if its right subtree

Operations: insert, delete, search (O(n) worst case, O(log n) if the tree is
balanced)
Inorder traversal yields sorted sequence

Data Structures (S. D. Bruda) CS 317, Fall 2024 2 / 12



DISJOINT SETS

Disjoint sets are non-empty, pairwise disjoint sets
Disjoint sets Xi , 1 ≤ i ≤ n:
∀ 1 ≤ i ≤ n : Xi ̸= ∅ ∧ ∀ 1 ≤ i , j ≤ n, i ̸= j : Xi ∩ Xj ̸= ∅
Each set has a member designated as the representative of that set

Operations:
MAKESET(i): construct a set containing i as its sole element
FINDSET(i): return the representative of the set containing i
UNION(i , j): replaces the two sets containing i and j with their union; one of
the two set representatives becomes the representative of the new set

Representation: each set can be represented as a tree with the
representative in the root

The tree does not have to be binary or balanced

Implementation: disjoint sets over a domain D represented as an array
parent indexed over D

parenti hold the parent of i in the tree representation, or i if i is the root

Data Structures (S. D. Bruda) CS 317, Fall 2024 3 / 12



DISJOINT SETS (CONT’D)
Example: {2,4,5,8}, {1}, {3,6,7}

Tree representation: Array implementation:
5

8 4

2

1 7

3 6

parent =
1 2 3 4 5 6 7 8
1 4 7 5 5 7 7 5

A basic implementation:
algorithm MAKESET(i):

parenti ← i

algorithm FINDSET(i):
while parenti ̸= i do i ← parenti
return i

algorithm UNION(i , j):
x ← FINDSET(i)
y ← FINDSET(j)
if x ̸= y then MERGETREES(x ,y )

algorithm MERGETREES(i , j):
parenti ← j

The tree representation can
become very linear (depending on
the sequence of calls to UNION), so
the running times are as follows:

MAKESET: O(1)
FINDSET: O(n)
UNION: O(n) (since it calls
FINDSET)

Data Structures (S. D. Bruda) CS 317, Fall 2024 4 / 12



DISJOINT SETS (CONT’D)
Example: {2,4,5,8}, {1}, {3,6,7}

Tree representation: Array implementation:
5

8 4

2

1 7

3 6

parent =
1 2 3 4 5 6 7 8
1 4 7 5 5 7 7 5

A basic implementation:
algorithm MAKESET(i):

parenti ← i

algorithm FINDSET(i):
while parenti ̸= i do i ← parenti
return i

algorithm UNION(i , j):
x ← FINDSET(i)
y ← FINDSET(j)
if x ̸= y then MERGETREES(x ,y )

algorithm MERGETREES(i , j):
parenti ← j

The tree representation can
become very linear (depending on
the sequence of calls to UNION), so
the running times are as follows:

MAKESET: O(1)
FINDSET: O(n)
UNION: O(n) (since it calls
FINDSET)

Data Structures (S. D. Bruda) CS 317, Fall 2024 4 / 12



DISJOINT SETS (CONT’D)
Example: {2,4,5,8}, {1}, {3,6,7}

Tree representation: Array implementation:
5

8 4

2

1 7

3 6

parent =
1 2 3 4 5 6 7 8
1 4 7 5 5 7 7 5

A basic implementation:
algorithm MAKESET(i):

parenti ← i

algorithm FINDSET(i):
while parenti ̸= i do i ← parenti
return i

algorithm UNION(i , j):
x ← FINDSET(i)
y ← FINDSET(j)
if x ̸= y then MERGETREES(x ,y )

algorithm MERGETREES(i , j):
parenti ← j

The tree representation can
become very linear (depending on
the sequence of calls to UNION), so
the running times are as follows:

MAKESET: O(1)
FINDSET: O(n)
UNION: O(n) (since it calls
FINDSET)

Data Structures (S. D. Bruda) CS 317, Fall 2024 4 / 12



DISJOINT SETS (CONT’D)
Weigthed union: To maintain a smaller tree height for the union we
decide what tree gets the root based on the heights of the operands
Maintain a height for each set (tree)
During union the tree with the smallest height is attached to the root of
the set with the larger height

The height stays the same
When the two operands have the same height attach one to another (no
matter which, but consistently)

The height increases by one
Overall for every two sets joined we have a height increase of at most one so
no height in the tree is going over log n
Better running times:

MAKESET: O(1)
FINDSET: O(log n)
UNION: O(log n) (since it calls FINDSET)

algorithm WUNION(i , j):
x ← FINDSET(i)
y ← FINDSET(j)
if x ̸= y then WMERGETREES(x ,y )

algorithm WMERGETREES(i , j):
if heighti > heightj then parentj ← i
else

parenti ← j
if heighti = heightj then

heightj ← heightj + 1

Data Structures (S. D. Bruda) CS 317, Fall 2024 5 / 12



DISJOINT SETS (CONT’D)

Collapsing find: Each time we call FINDSET we collapse all the nodes we
traverse so that they become connected directly to the root
algorithm CFINDSET(i):

if i ̸= parenti then parenti ← CFINDSET(parenti )
return parenti

When using weighted union alone n MAKESET and m WUNION/FINDSET
takes O(n + m log n) time
When using weighted union and collapsing find n MAKESET and m
WUNION/CFINDSET takes O(n + m + α(n,m)) time where α(n,m) is a
constant for all practical purposes

n MAKESET +
MAKESET(i) FIND(i) UNION(i , j) m UNION/FIND

Basic impl. O(1) O(n) O(n) O(n + nm)

Weighted union O(1) O(log n) O(log n) O(n + m log n)
Weighted union + O(1) O(log n) O(log n) ≈ O(n + m)
collapsing find

Data Structures (S. D. Bruda) CS 317, Fall 2024 6 / 12



GRAPHS

Directed graph (digraph): G = (V ,E) where V is a set of vertices and
E ⊆ V × V is the set of edges

In a graphical representation edges are shown as arrows between vertices
Undirected graph: A graph G = (V ,E) with the additional property that
(u, v) ∈ E iff (v ,u) ∈ E

In a graphical representation edges are shown as lines between vertices
Weighted graph: G = (V ,E ,w) where (V ,E) is a graph and w : E → R

associates a weight to each edge
In a graphical representation weights are shown as edge labels

Concepts related to graphs:
adjacent vertices, degree, in degree, out degree
complement of G = (V ,E): G′ = (V ,V × V \ E)
path, simple path, cycle, simple cycle
acyclic graph
length of the shortest path from u to v : DIST(u, v)
diameter of G = (V ,E): DIAM(G) = max{DIST(u, v) : u,w ∈ V}
subgraph: a subset of edges along with all their vertices
induced subgraph: contains all the edges between its vertices
Hamiltonian cycle: cycle that contains each vertex exactly once
Euler cycle: cycle that contains each edge exactly once

Data Structures (S. D. Bruda) CS 317, Fall 2024 7 / 12



MORE TYPES OF GRAPHS

(Strongly) connected graph: graph that
has a path between each pair of vertices

For a connected graph G = (V ,E) what
is the minimum and the maximum |E | (in
terms of |V |)?

Weakly connected graph: directed graph
that is not connected but becomes
connected if we transform it into an
undirected graph

No concept of weak connectivity for
undirected graphs (they are either
connected or not)

Clique or complete graph: G = (V ,V ×V )

Sparse vs dense graphs
Bipartite graph: G = (V1 ⊎ V2,E) such
that E ⊆ V1 × V2 ∪ V2 × V1

Complete bipartite graph:
G = (V1 ⊎ V2,V1 × V2 ∪ V2 × V1)

Connected: Unconnected:

c d



e

b

c d



e

b

Strongly Weakly
connected: connected:

c d

 b

c d e

 b

Complete
Bipartite: bipartite:



b

d

c

d



b

d

c

d

Data Structures (S. D. Bruda) CS 317, Fall 2024 8 / 12



GRAPH REPRESENTATION

Adjacency matrix
For G = (V ,E) establish an (arbitrary) order over V , such that we can
consider V = {0, 1, . . . , n}
Then G can be represented as the binary matrix (Gij)0≤i,j≤n such that
Gij = 1 iff (i , j) ∈ E
For a weighted G = (V ,E ,w) set Gij = w(i , j) if (i , j) ∈ E and Gij = ∞
otherwise

Undirected: Directed: Weighted:
a b c d e

a 0 1 1 1 0
b 1 0 0 0 1
c 1 0 0 1 0
d 1 0 1 0 0
e 0 1 0 0 0

a b c d e
a 0 0 0 1 0
b 1 0 0 0 0
c 1 0 0 1 0
d 0 0 0 0 0
e 0 1 0 0 0

a b c d e
a ∞ 5 2 1 ∞
b 5 ∞ ∞ ∞ 8
c 2 ∞ ∞ 2 ∞
d 1 ∞ 2 ∞ ∞
e ∞ 8 ∞ ∞ ∞

Adjacency list: For each vertex v use a list with exactly all the vertices u
such that (v ,u) ∈ E

Include the weights if it is a weighted graph
a → b → c → d
b → a → e
c → a → d
d → a → c
e → b

a → d
b → a
c → a → d
d
e → b

a → b, 5 → c, 2 → d, 1
b → a, 5 → e, 8
c → a, 2 → d, 2
d → a, 1 → c, 2
e → b, 8

Time/space efficiency?
Data Structures (S. D. Bruda) CS 317, Fall 2024 9 / 12



GRAPH TRAVERSAL

algorithm TRAVERSE(G = (V ,E)):
foreach v ∈ V do

visitv ← false
Let v ∈ V such that visitv = false
if v exists then

LISTTRAVERSE(v )

algorithm LISTTRAVERSE(v ∈ V ):
open← ⟨v⟩
visitv ← true
while open ̸= ⟨⟩ do

u ← HEAD(open)
Output u
new← ⟨x : (u, x) ∈ E ∧ ¬visitedx ⟩
foreach x ∈ new do visitx ← true
open← REST(open) ⊕ new

Two different variants of ⊕ yield two different traversals:
Breath-first traversal: L′ ⊕ L′′ = L′ + L′′

New vertices are added at the end and so open implements a queue

Depth-first traversal: L′ ⊕ L′′ = L′′ + L′

New vertices are added at the beginning and so open implements a stack
Depth-first traversal can also be implemented recursively:

algorithm DFS(G = (V ,E)):
foreach v ∈ V do visitv ← false
Let v ∈ V such that visitv = false
if v exists then RECDFS(v )

algorithm RECDFS(v ∈ V ):
Output v
visitv ← true
foreach (v , u) ∈ E ∧ ¬visitu do

RECDFS(u)

Data Structures (S. D. Bruda) CS 317, Fall 2024 10 / 12



GRAPH TRAVERSAL

algorithm TRAVERSE(G = (V ,E)):
foreach v ∈ V do

visitv ← false
Let v ∈ V such that visitv = false
if v exists then

LISTTRAVERSE(v )

algorithm LISTTRAVERSE(v ∈ V ):
open← ⟨v⟩
visitv ← true
while open ̸= ⟨⟩ do

u ← HEAD(open)
Output u
new← ⟨x : (u, x) ∈ E ∧ ¬visitedx ⟩
foreach x ∈ new do visitx ← true
open← REST(open) ⊕ new

Two different variants of ⊕ yield two different traversals:
Breath-first traversal: L′ ⊕ L′′ = L′ + L′′

New vertices are added at the end and so open implements a queue

Depth-first traversal: L′ ⊕ L′′ = L′′ + L′

New vertices are added at the beginning and so open implements a stack
Depth-first traversal can also be implemented recursively:

algorithm DFS(G = (V ,E)):
foreach v ∈ V do visitv ← false
Let v ∈ V such that visitv = false
if v exists then RECDFS(v )

algorithm RECDFS(v ∈ V ):
Output v
visitv ← true
foreach (v , u) ∈ E ∧ ¬visitu do

RECDFS(u)

Data Structures (S. D. Bruda) CS 317, Fall 2024 10 / 12



GRAPH TRAVERSAL (CONT’D)

Any traversal of a graph G avoids all edges that would result in cycles
Therefore it only expands (and thus defines) an acyclic subgraph of G

= the traversal (DFS or BFS) tree

c d



e

b

Same traversal output starting from a: a, c, d , b, e
Different traversal trees:

BFS tree: DFS tree:

c d



e

b

c d



e

b

Both algorithms run in time O(n + m)

Space requirements however are vastly different

Data Structures (S. D. Bruda) CS 317, Fall 2024 11 / 12



GRAPH TRAVERSAL (CONT’D)

Any traversal of a graph G avoids all edges that would result in cycles
Therefore it only expands (and thus defines) an acyclic subgraph of G
= the traversal (DFS or BFS) tree

c d



e

b

Same traversal output starting from a: a, c, d , b, e
Different traversal trees:

BFS tree: DFS tree:

c d



e

b

c d



e

b

Both algorithms run in time O(n + m)

Space requirements however are vastly different

Data Structures (S. D. Bruda) CS 317, Fall 2024 11 / 12



GRAPH TRAVERSAL (CONT’D)

Any traversal of a graph G avoids all edges that would result in cycles
Therefore it only expands (and thus defines) an acyclic subgraph of G
= the traversal (DFS or BFS) tree

c d



e

b

Same traversal output starting from a: a, c, d , b, e
Different traversal trees:

BFS tree: DFS tree:

c d



e

b

c d



e

b

Both algorithms run in time O(n + m)

Space requirements however are vastly different

Data Structures (S. D. Bruda) CS 317, Fall 2024 11 / 12



TOPOLOGICAL SORTING ON DIRECTED GRAPHS

Given a graph G = (V ,E), obtain a linear ordering of V such that for
every edge (u, v) ∈ E , u comes before v in the ordering

algorithm TSORT(G = (V ,E)):
order← ⟨⟩
S ← V
while S ̸= ∅ do

Let v ∈ S with in-degree 0
order← order + ⟨v⟩
E ← E \ {(v , u) ∈ E}
V ← V \ v

algorithm TSORT’(G = (V ,E)):
order← ⟨⟩
k ← n
foreach v ∈ V do visitv ← false
while ∃ v ∈ V : visitv = false do

RECTOPO(v )

algorithm RECTOPO(v ∈ V ):
visitv ← true
foreach (v , u) ∈ E ∧ ¬visitu do

RECTOPO(u)
orderk ← v
k ← k − 1

Many practical applications, e.g.
sorting over a course prerequisite
structure

201

211

216

310

321

304

311

317

403

409

Possible order:
⟨211, 310, 321, 201, 304, 403, 317, 216, 311, 409⟩

Data Structures (S. D. Bruda) CS 317, Fall 2024 12 / 12


