Data Structures

Stefan D. Bruda

CS 317, Fall 2024

DATA STRUCTURES RECAP

- Stack (FILO): push, pop, empty constant time
- Queue (FIFO): insert, delete, empty constant time
- Heaps: implementation of priority queue
 - Operations: insert $(O(\log n))$, peek (highest priority, O(1)), delete (highest priority, $O(\log n)$)
 - Tree representation, with children values smaller (maxheap) or larger (minheap) than the vertex value (weakly sorted)
 - Most efficiently implemented using arrays
 - Efficient sorting (heapsort)

DATA STRUCTURES RECAP (CONT'D)

- Trees: simple connected graph, one vertex may be designated as root
 - For a graph *T* with *n* vertices the following statements are equivalent:
 - T is a tree
 - T is connected and acyclic
 - T is connected and has n-1 edges
 - T is acyclic and has n-1 edges
 - Concepts: parent, ancestor, child, descendant, sibling, leaf, internal note
- Binary tree: each node had at most two children (left and right)
 - In a binary tree of height h with n nodes we have $h \ge \log_2 n$ (or $n \le 2^h$)
 - Binary tree traversals (O(n) complexity):

- Binary search tree: the value in every vertex is larger than all the values in its left subtree and smaller than all the values if its right subtree
 - Operations: insert, delete, search (O(n) worst case, O(log n) if the tree is balanced)
 - Inorder traversal yields sorted sequence

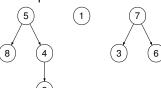
Data Structures (S. D. Bruda) CS 317, Fall 2024

DISJOINT SETS

- Disjoint sets are non-empty, pairwise disjoint sets
 - Disjoint sets X_i , $1 \le i \le n$: $\forall 1 \le i \le n : X_i \ne \emptyset$ \land $\forall 1 \le i,j \le n, i \ne j : X_i \cap X_i \ne \emptyset$
 - Each set has a member designated as the representative of that set
- Operations:
 - MAKESET(i): construct a set containing i as its sole element
 - FINDSET(i): return the representative of the set containing i
 - UNION(i, j): replaces the two sets containing i and j with their union; one of the two set representatives becomes the representative of the new set
- Representation: each set can be represented as a tree with the representative in the root
 - The tree does not have to be binary or balanced
- Implementation: disjoint sets over a domain D represented as an array parent indexed over D
 - parent; hold the parent of i in the tree representation, or i if i is the root

• Example: $\{2, 4, \underline{5}, 8\}, \{\underline{1}\}, \{3, 6, \underline{7}\}$

Tree representation:

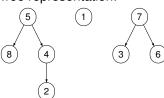


Array implementation:

par	ent =	=					
1	2	3	4	5	6	7	8
1	4	7	5	5	7	7	5
,							

• Example: $\{2, 4, \underline{5}, 8\}, \{\underline{1}\}, \{3, 6, \underline{7}\}$

Tree representation:



Array implementation:

A basic implementation:

```
algorithm MAKESET(i):

parent_i \leftarrow i

algorithm FINDSET(i):

while parent_i \neq i do i \leftarrow parent_i

return i

algorithm UNION(i, j):

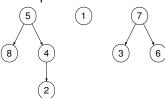
x \leftarrow FINDSET(i)
y \leftarrow FINDSET(j)
if x \neq y then MERGETREES(x, y)

algorithm MERGETREES(i, j):
```

 $\int parent_i \leftarrow j$

• Example: $\{2, 4, \underline{5}, 8\}, \{\underline{1}\}, \{3, 6, \underline{7}\}$

Tree representation:



Array implementation:

A basic implementation:

```
algorithm MAKESET(i):

parent_i \leftarrow i

algorithm FINDSET(i):

while parent_i \neq i do i \leftarrow parent_i

return i

algorithm UNION(i, j):

x \leftarrow FINDSET(i)

y \leftarrow FINDSET(j)

if x \neq y then MERGETREES(x,y)
```

algorithm MERGETREES(i, j): $parent_i \leftarrow j$

- The tree representation can become very linear (depending on the sequence of calls to UNION), so the running times are as follows:
 - MAKESET: O(1)
 - FINDSET: O(n)
 - UNION: O(n) (since it calls FINDSET)

5 / 12

- Weigthed union: To maintain a smaller tree height for the union we decide what tree gets the root based on the heights of the operands
- Maintain a height for each set (tree)
- During union the tree with the smallest height is attached to the root of the set with the larger height
 - The height stays the same
- When the two operands have the same height attach one to another (no matter which, but consistently)
 - The height increases by one
 - Overall for every two sets joined we have a height increase of at most one so no height in the tree is going over log n
 - Better running times:

```
MAKESET: O(1)FINDSET: O(log n)
```

UNION: O(log n) (since it calls FINDSET)

```
algorithm WUNION(i, j):

x \leftarrow FINDSET(i)

y \leftarrow FINDSET(j)

if x \neq y then WMERGETREES(x,y)
```

```
algorithm WMERGETREES(i, j):if height_i > height_j then parent_j \leftarrow ielseparent_i \leftarrow jif height_i = height_j then| height_i \leftarrow height_i + 1
```


 Collapsing find: Each time we call FINDSET we collapse all the nodes we traverse so that they become connected directly to the root algorithm CFINDSET(i):

```
if i \neq parent_i then parent_i \leftarrow CFINDSET(parent_i) return parent_i
```

- When using weighted union alone n MAKESET and m WUNION/FINDSET takes $O(n+m\log n)$ time
- When using weighted union and collapsing find n MAKESET and m WUNION/CFINDSET takes $O(n+m+\alpha(n,m))$ time where $\alpha(n,m)$ is a constant for all practical purposes

				n Makeset $+$
	MAKESET(i)	FIND(i)	Union (i, j)	m Union/Find
Basic impl.	O(1)	O(n)	O(n)	O(n + nm)
Weighted union	O(1)	$O(\log n)$	$O(\log n)$	$O(n + m \log n)$
Weighted union + collapsing find	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	$\approx O(n+m)$

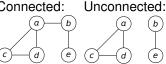
GRAPHS

- Directed graph (digraph): G = (V, E) where V is a set of vertices and $E \subseteq V \times V$ is the set of edges
 - In a graphical representation edges are shown as arrows between vertices
- Undirected graph: A graph G = (V, E) with the additional property that $(u, v) \in E$ iff $(v, u) \in E$
 - In a graphical representation edges are shown as lines between vertices
- Weighted graph: G = (V, E, w) where (V, E) is a graph and $w : E \to \mathbb{R}$ associates a weight to each edge
 - In a graphical representation weights are shown as edge labels
- Concepts related to graphs:
 - adjacent vertices, degree, in degree, out degree
 - complement of G = (V, E): $G' = (V, V \times V \setminus E)$
 - path, simple path, cycle, simple cycle
 - acyclic graph
 - length of the shortest path from u to v: DIST(u, v)
 - diameter of G = (V, E): DIAM $(G) = \max\{\text{DIST}(u, v) : u, w \in V\}$
 - subgraph: a subset of edges along with all their vertices
 - induced subgraph: contains all the edges between its vertices
 - Hamiltonian cycle: cycle that contains each vertex exactly once
 - Euler cycle: cycle that contains each edge exactly once

More types of graphs

- (Strongly) connected graph: graph that has a path between each pair of vertices
 - For a connected graph G = (V, E) what is the minimum and the maximum |E| (in terms of |V|)?
- Weakly connected graph: directed graph that is not connected but becomes connected if we transform it into an undirected graph
 - No concept of weak connectivity for undirected graphs (they are either connected or not)
- Clique or complete graph: $G = (V, V \times V)$
- Sparse vs dense graphs
- Bipartite graph: $G = (V_1 \uplus V_2, E)$ such that $E \subseteq V_1 \times V_2 \cup V_2 \times V_1$
 - Complete bipartite graph: $G = (V_1 \uplus V_2, V_1 \times V_2 \cup V_2 \times V_1)$

Connected:



Strongly connected:

Weakly connected:

Bipartite:

Complete bipartite:

GRAPH REPRESENTATION

- Adjacency matrix
 - For G = (V, E) establish an (arbitrary) order over V, such that we can consider $V = \{0, 1, ..., n\}$
 - Then G can be represented as the binary matrix $(G_{ij})_{0 \le i,j \le n}$ such that $G_{ij} = 1$ iff $(i,j) \in E$
 - For a weighted G = (V, E, w) set $G_{ij} = w(i, j)$ if $(i, j) \in E$ and $G_{ij} = \infty$ otherwise

Undirected:								
	a	ь	С	d	e e			
а	0	1	1	1	0			
ь	1	0	0	0	1	ĺ		
С	1	0	0	1	0			
d	1	0	1	0	0			
е	0	1	0	0	0			

Directed:								
	a	b	C	d	e			
a	0	0	0	1	0			
ь	1	0	0	0	0			
c	1	0	0	1	0			
d	0	0	0	0	0			
e	0	1	0	0	0			

Wei	Weighted:							
		a	b	C	d	e		
é	3	∞	5	2	1	∞		
L)	5	∞	∞	∞	8		
	;	2	∞	∞	2	∞		
- 0	1	1	∞	2	∞	∞		
- 6	,	∞	8	∞	∞	∞		

- Adjacency list: For each vertex v use a list with exactly all the vertices u such that $(v, u) \in E$
 - Include the weights if it is a weighted graph

а	$\rightarrow b \rightarrow c \rightarrow d$	а	$\rightarrow d$	а	$\rightarrow b, 5 \rightarrow c, 2 \rightarrow d, 1$
ь	$\rightarrow a \rightarrow e$	ь	$\rightarrow a$	b	$\rightarrow a, 5 \rightarrow e, 8$
С	$\rightarrow a \rightarrow d$	С	$\rightarrow a \rightarrow d$	С	$\rightarrow a, 2 \rightarrow d, 2$
d	$\rightarrow a \rightarrow c$	d		d	$\rightarrow a, 1 \rightarrow c, 2$
е	$\rightarrow b$	е	$\rightarrow b$	е	→ b, 8

• Time/space efficiency?

GRAPH TRAVERSAL


```
algorithm LISTTRAVERSE(v \in V):open \leftarrow \langle v \ranglevisit_v \leftarrow truewhile open \neq \langle \rangle dou \leftarrow HEAD(open)Output unew \leftarrow \langle x : (u, x) \in E \land \neg visited_x \rangleforeach \ x \in new \ do \ visit_x \leftarrow trueopen \leftarrow REST(open) \oplus new
```

GRAPH TRAVERSAL


```
algorithm TRAVERSE(G = (V, E)):

foreach v \in V do

visit_v \leftarrow false

Let v \in V such that visit_v = false

if v exists then

LISTTRAVERSE(v)
```

```
\begin{array}{c|c} \textbf{algorithm} \ \mathsf{ListTraverse}(v \in V) \text{:} \\ open \leftarrow \langle v \rangle \\ visit_v \leftarrow \mathsf{true} \\ \textbf{while} \ open \neq \langle \rangle \ \textbf{do} \\ & u \leftarrow \mathsf{HeAD}(open) \\ & \mathsf{Output} \ u \\ & new \leftarrow \langle x : (u, x) \in E \land \neg visited_x \rangle \\ & \textbf{foreach} \ x \in new \ \textbf{do} \ visit_x \leftarrow \mathsf{true} \\ & open \leftarrow \mathsf{Rest}(open) \oplus new \end{array}
```

Two different variants of \oplus yield two different traversals:

- Breath-first traversal: $L' \oplus L'' = L' + L''$
 - New vertices are added at the end and so open implements a queue
- Depth-first traversal: $L' \oplus L'' = L'' + L'$
 - New vertices are added at the beginning and so open implements a stack
 - Depth-first traversal can also be implemented recursively:

```
algorithm DFS(G = (V, E)):

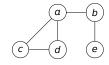
foreach v \in V do visit_V \leftarrow false

Let v \in V such that visit_V = false

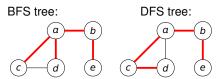
if v exists then RECDFS(v)
```

GRAPH TRAVERSAL (CONT'D)

- Any traversal of a graph G avoids all edges that would result in cycles
- Therefore it only expands (and thus defines) an acyclic subgraph of G



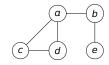
- Same traversal output starting from a: a, c, d, b, e
- Different traversal trees:



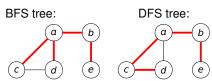
• Both algorithms run in time O(n+m)

GRAPH TRAVERSAL (CONT'D)

- Any traversal of a graph G avoids all edges that would result in cycles
- Therefore it only expands (and thus defines) an acyclic subgraph of G
 the traversal (DFS or BFS) tree



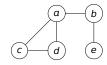
- Same traversal output starting from a: a, c, d, b, e
- Different traversal trees:



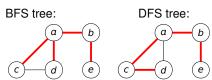
• Both algorithms run in time O(n+m)

GRAPH TRAVERSAL (CONT'D)

- Any traversal of a graph G avoids all edges that would result in cycles
- Therefore it only expands (and thus defines) an acyclic subgraph of G
 the traversal (DFS or BFS) tree



- Same traversal output starting from a: a, c, d, b, e
- Different traversal trees:



- Both algorithms run in time O(n+m)
- Space requirements however are vastly different

TOPOLOGICAL SORTING ON DIRECTED GRAPHS

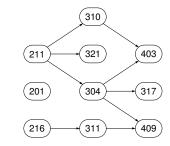
• Given a graph G = (V, E), obtain a linear ordering of V such that for every edge $(u, v) \in E$, u comes before v in the ordering

```
 \begin{array}{c|c} \textbf{algorithm} \ \mathsf{TSORT}(G = (V, E)) \text{:} \\ & \textit{order} \leftarrow \langle \rangle \\ & S \leftarrow V \\ & \textbf{while} \ S \neq \emptyset \ \textbf{do} \\ & \quad | \  \  \, \text{Let} \ v \in S \ \text{with in-degree 0} \\ & \textit{order} \leftarrow \textit{order} + \langle v \rangle \\ & \quad | \  \  \, E \leftarrow E \setminus \{(v, u) \in E\} \\ & \quad | \  \  \, V \leftarrow V \setminus V \end{aligned}
```

```
\begin{array}{c|c} \textbf{algorithm TSORT'}(G = (V, E)): \\ & \textit{order} \leftarrow \langle \rangle \\ & \textit{k} \leftarrow n \\ & \textbf{foreach } v \in V \textbf{ do } \textit{visit}_{V} \leftarrow \textbf{false} \\ & \textbf{while } \exists \, v \in V : \textit{visit}_{V} = \textbf{false do} \\ & \sqsubseteq \text{RECTOPO}(v) \end{array}
```

```
algorithm RECTOPO(v \in V):visit_v \leftarrow trueforeach (v, u) \in E \land \neg visit_u do\bot RECTOPO(u)order_k \leftarrow v
```

 Many practical applications, e.g. sorting over a course prerequisite structure



Possible order: $\langle 211, 310, 321, 201, 304, 403, 317, 216, 311, 409 \rangle$