Correctness of Algorithms

Stefan D. Bruda

CS 317, Fall 2025

CORRECTNESS OF ITERATIVE ALGORITHMS

- For this course we establish correctness semi-formally
 - Rigorous correctness argument, but not necessarily formulated in a formal logic framework

CORRECTNESS OF ITERATIVE ALGORITHMS

- For this course we establish correctness semi-formally
 - Rigorous correctness argument, but not necessarily formulated in a formal logic framework
- Establishing the correctness of sequences of statements is generally easy
 - A simple argument that walks through the code usually suffices

CORRECTNESS OF ITERATIVE ALGORITHMS

- For this course we establish correctness semi-formally
 - Rigorous correctness argument, but not necessarily formulated in a formal logic framework
- Establishing the correctness of sequences of statements is generally easy
 - A simple argument that walks through the code usually suffices
- Establishing the correctness of loops is best done by coming up with a loop invariant
 - Can choose some place in the loop (usually either the beginning or the end of the loop code) where the invariant is always true
 - The invariant must imply the desired property of the output (at the end of the loop)
 - That the invariant is indeed an invariant can be proven by induction over the number of the current iteration
 - Prove that the invariant is true at the start of the loop (Iteration 0)
 - Assume that the invariant is true at iteration k and then prove that it is also true at iteration k + 1
 - Make sure that the invariant establishes the desired correctness at the end of the loop

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

return -1


```
algorithm BINSEARCH(x, S, l, h):

\begin{array}{c|c}
// S_{l...h} \text{ is a sorted sequence} \\
i \leftarrow l \\
j \leftarrow h \\
\text{while } i \leq j \text{ do} \\
& m \leftarrow (i+j)/2 \\
\text{if } S_m = x \text{ then return } m \\
\text{else if } S_m > x \text{ then } j \leftarrow m-1 \\
\text{else } i \leftarrow m+1
\end{array}
```

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

• Loop invariant, true at the beginning of every iteration:

return -1

algorithm BINSEARCH(x, S, I, h): | // $S_{l...h}$ is a sorted sequence

else $i \leftarrow m+1$

$$i \in I$$
 $j \in h$

while $i \le j$ do

 $m \leftarrow (i+j)/2$

if $S_m = x$ then return m

else if $S_m > x$ then $j \leftarrow m-1$

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

_ return -1

Loop invariant, true at the beginning of every iteration:

$$S_{(i+j)/2} = x \lor x \notin S_{1...i-1} \land x \notin S_{j+1...h}$$

- Clearly $x \notin S_{l...i-1} \land x \notin S_{j+1...h}$ holds for i = l and j = h so the invariant is true at the start of the loop
- If $S_{(i+j)/2} = x$ then the loop terminates (there is no next iteration)
- Otherwise $(x \notin S_{i...i-1} \land x \notin S_{i+1...h}$ is true):
 - If $S_{m=(i+j)/2} > x$ then $S_{m...j} \ge S_m > x$ and so $x \notin S_{m...h} \land x \notin S_{l...i-1}$ This shows that the invariant is true at the next iteration since $j \leftarrow m-1$
 - If $S_{m=(i+j)/2} < x$ then $S_{l...j} < S_m < x$ and so $x \notin S_{i...m} \land x \notin S_{j+1...h}$ This shows that the invariant is true at the next iteration since $j \leftarrow m+1$

algorithm BINSEARCH(x, S, I, h):

```
||S_{I...h}| is a sorted sequence i \leftarrow I j \leftarrow h while i \le j do m \leftarrow (i+j)/2 if S_m = x then return m else if S_m > x then j \leftarrow m-1 else i \leftarrow m+1
```

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

Loop invariant, true at the beginning of every iteration:

$$S_{(i+j)/2} = x \lor x \notin S_{l...i-1} \land x \notin S_{j+1...h}$$

- Clearly $x \notin S_{l...i-1} \land x \notin S_{j+1...h}$ holds for i = l and j = h so the invariant is true at the start of the loop
- If $S_{(i+j)/2} = x$ then the loop terminates (there is no next iteration)
- Otherwise $(x \notin S_{l...l-1} \land x \notin S_{j+1...h}$ is true):
 - If $S_{m=(i+j)/2} > x$ then $S_{m...j} \ge S_m > x$ and so $x \notin S_{m...h} \land x \notin S_{l...i-1}$ This shows that the invariant is true at the next iteration since $j \leftarrow m-1$
 - If $S_{m=(i+j)/2} < x$ then $S_{l...i} < S_m < x$ and so $x \notin S_{i...m} \land x \notin S_{j+1...h}$ This shows that the invariant is true at the next iteration since $j \leftarrow m+1$
- How the invariant establishes correctness when the loop terminates:
 - If r == -1 then i > j so $x \notin S_{l...l-1} \land x \notin S_{j+1...h}$ implies $x \notin S_{l...h}$
 - Otherwise **return** m was executed, so $S_m = x$, and so $S_r = x$

return -1

CORRECTNESS OF RECURSIVE ALGORITHMS

- Correctness of recursive algorithms best established using the following particular case of structural induction
- To establish the property $\mathcal{P}(f(x))$ for a recursive function f:
 - Base case: Establish that $\mathcal{P}(f(x))$ holds for all the fixed point(s) (non-recursive case(s)) of f
 - Inductive step: Establish that $\mathcal{P}(f(x))$ holds for all the recursive case(s) of f under the inductive hypothesis that $\mathcal{P}(f(x'))$ is true for all the recursive calls f(x') within f

CORRECTNESS OF RECURSIVE ALGORITHMS

- Correctness of recursive algorithms best established using the following particular case of structural induction
- To establish the property $\mathcal{P}(f(x))$ for a recursive function f:
 - Base case: Establish that $\mathcal{P}(f(x))$ holds for all the fixed point(s) (non-recursive case(s)) of f
 - Inductive step: Establish that $\mathcal{P}(f(x))$ holds for all the recursive case(s) of f under the inductive hypothesis that $\mathcal{P}(f(x'))$ is true for all the recursive calls f(x') within f
- Technically a structural induction over the recursion tree
 - Also a mathematical induction over the depth of the recursion tree

CORRECTNESS OF RECURSIVE ALGORITHMS

- Correctness of recursive algorithms best established using the following particular case of structural induction
- To establish the property $\mathcal{P}(f(x))$ for a recursive function f:
 - Base case: Establish that $\mathcal{P}(f(x))$ holds for all the fixed point(s) (non-recursive case(s)) of f
 - Inductive step: Establish that $\mathcal{P}(f(x))$ holds for all the recursive case(s) of f under the inductive hypothesis that $\mathcal{P}(f(x'))$ is true for all the recursive calls f(x') within f
- Technically a structural induction over the recursion tree
 - Also a mathematical induction over the depth of the recursion tree
 - Note in passing: Recursion tree of f(x):
 - Nodes labeled with f(x)
 - Node f(x) is the parent of f(x') iff f(x') is (recursively) called from within f(x)
 - Leafs are nodes with no recursive calls (fixed points)

Base case:

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

• Need to show that for return r: $S_r = x \lor r = -1 \land x \notin S_{l-h}$

- Base case: l > h, so the range $S_{l...h}$ is empty, and so $x \notin S_{l...h}$; it is also the case that r = -1, as desired
- Inductive hypothesis:

• Need to show that for return r: $S_r = x \lor r = -1 \land x \notin S_{l-h}$

- Base case: l > h, so the range $S_{l...h}$ is empty, and so $x \notin S_{l...h}$; it is also the case that r = -1, as desired
- Inductive hypothesis: The property holds for BINSEARCH(x, S, I, m-1) and BINSEARCH(x, S, m+1, h)
- Inductive step:

• Need to show that for return r: $S_r = x \lor r = -1 \land x \notin S_{l-h}$

- Base case: l > h, so the range $S_{l...h}$ is empty, and so $x \notin S_{l...h}$; it is also the case that r = -1, as desired
- Inductive hypothesis: The property holds for BINSEARCH(x, S, I, m-1) and BINSEARCH(x, S, m+1, h)
- Inductive step:
 - If $S_m = x$ then the appropriate value (m) is returned
 - If $x < S_m$ then $x \notin S_{m...h}$ (see earlier) and so x can only be in $S_{l...m-1}$ The call BINSEARCH(x, S, l, m-1) will then return the correct r by induction hypothesis
 - If $x > S_m$ then $x \notin S_{l...m}$ (again see earlier) and so x can only be in $S_{m+1...h}$ The call BINSEARCH(x, S, m+1, h) will then return the correct r by induction hypothesis

ANOTHER EXAMPLE OF STRUCTURAL INDUCTION


```
algorithm MergeSort(S, I, h):

if I > h then

m \leftarrow (I + h)/2

MergeSort(S, I, m)

MergeSort(S, m + 1, h)
```

MERGE(S I, m, h)

- Need to show that when MERGESORT(S, I, h) returns the sequence S_{I...h} is sorted
 - Additional assumption: If the sequences S_{l...m} and S_{m+1...h} are sorted before the call MERGE(S I, m, h), then the sequence S_{l...h} is sorted after that call
- Base case: I ≥ h means that S_{I...h} holds at most one value so it is already sorted
- Inductive step:
 - Before the call to MERGE the sequences $S_{l...m}$ and $S_{m+1...h}$ are sorted by induction hypothesis
 - Therefore MERGE will return a sorted sequence s_{l...h}