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DIVIDE AND CONQUER

Idea:
1 If the problem is small enough, then

solve it
2 Otherwise:

1 Divide the problem into two or more
sub-problems

2 Solve each sub-problem recursively
3 Combine the solutions to the

sub-problems to obtain a solution to
the original problem

Example:
algorithm MERGESORT(S, l , h):

if l < h then
m← (l + h)/2 // divide
MERGESORT(S, l , m) // conquer
MERGESORT(S, m + 1, h) // conquer
MERGE(S, l , m, h) // combine

algorithm MERGE(S, l , m, h):
T ← ⟨⟩ // merge placeholder
i ← l // top of first half
j ← m // top of second half
k ← l // top of T
while i ≤ m ∧ j ≤ h do

if Si < Sj then // compare top
Tk ← Si // smaller in T
i ← i + 1 // advance top

else
Tk ← Sj // smaller in T
i ← j + 1 // advance top

k ← k + 1
while i ≤ m do // flush first half

Tk ← Si
i ← i + 1
k ← k + 1

while j ≤ h do // flush second half
Tk ← Sj

j ← j + 1
k ← k + 1

for k = l to h do // result back into S
Sk ← Tk
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MERGESORT ANALYSIS

Lemma (correctness of MERGE)
If Sl...m and Sm+1...h are sorted then at the end of MERGE the sequence Tl...h
contains a sorted permutation of Sl...h

Loop invariant (for all three loops): Tl...k−1 is sorted and contains exactly
all the k − 1 smallest elements of Sl...h

Proof by induction over k
At the end of the loop k = h + 1 and so the invariant implies the desired
properties of T

Theorem (correctness of MERGESORT)
MERGESORT replaces any input sequence Sh..l with a sorted permutation of
that sequence

Proof by induction on h − l :
In the base case h − l = 0 MERGESORT (correctly) does nothing
To sort h − l values MERGESORT sorts correctly (h − l)/2 values two times
(inductive hypothesis) and then correctly merges the two sub-sequences
(lemma), thus obtaining a sorted permutation of the original sequence
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MERGESORT ANALYSIS (CONT’D)
T (n) = 2T (n/2) + n,T (1) = 1 so T (n) = Θ(n log n) → already known!

Theorem (comparison sorting lower bound)
The lower bound for comparison sort algorithms is Ω(n log n)

We count comparisons using a decision tree
Internal node Si,j represents a comparison between Si and Sj

The left [right] sub-tree represents all the decisions to be made provided that
Si ≤ Sj [Si > Sj ]
Each leaf labeled with a different permutation of S
Following a path performs the sequence of comparison given by the
sequence of nodes and produces the leaf permutation of S

We have n! permutations (leafs) so the minimum path from root to a leaf
contains log(n!) = Θ(n log n) nodes
So a sorting algorithm must perform Ω(n log n) comparisons to
differentiate between all the possible permutations

Corollary (optimality of MERGESORT)
MERGESORT is optimal
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QUICKSORT

Problem with MERGESORT: require substantial extra space
By contrast QuickSort is an in-place sorting algorithm
algorithm QUICKSORT(S, l , h):

if l < h then
Choose pivot Sx
S1 ↔ Sx
p ← PARTITION(S, l, h)
QUICKSORT(S, l , p − 1)
QUICKSORT(S, p + 1, h)

algorithm PARTITION(S, l , h): // ver. 1
pivot← Sl
j ← l
for i = l + 1 to h do

if Si < pivot then
j ← j + 1
Si ↔ Sj

Sl ↔ Sj
return j

algorithm PARTITION(S, l , h): // ver. 2
pivot← Sl
i ← l
j ← h + 1 // start beyond ends
repeat

repeat i ← i + 1 until Si > pivot:
repeat j ← j − 1 until Sj < pivot:
if i < j then Si ↔ Sj

until i > j :
Sl ↔ Sj

return j
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ANALYSIS OF QUICKSORT

Time complexity:
Best case: we always partition equally
T (n) = 2T (n/2) + n, T (1) = 1 and so T (n) = Θ(n log n)
Worst case: one partition is always empty (when?)
T (n) = T (n − 1) + n, T (1) = 1 and so T (n) = Θ(n2)

Can mitigate (but not fix) the worst case by choosing the pivot randomly of
the best out of k random values for a small constant k

QuickSort is not stable
Correctness of PARTITION:

Loop invariant for version 1: At the end of an iteration all values Sl+1...j are
smaller than pivot and no value Sj+1...i is smaller than pivot
Can verify by induction over i
Invariant implies desired postcondition that everything in Sl...p−1 is less than
pivot and nothing in Sp+1...h is less than the pivot
Loop invariant for version 2: At the end of an iteration all values in Sl+1...i are
smaller than the pivot and no values in Sj...h are smaller than the pivot
Can verify by induction over the iteration number

Correctness of QUICKSORT: same as for MERGESORT (induction over
h − l)
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LINEAR-TIME SELECTION

We use the QuickSort idea to find the k -th smallest value in a given array,
without sorting the array:
algorithm QUICKSELECT(k , S, l , h):

if l < h then
Choose pivot Sx
S1 ↔ Sx
p ← PARTITION(S, l, h)
if k = p then return Sk
else if k < p then QUICKSELECT(k , S, l , p − 1)
else QUICKSELECT(k , S, p + 1, h)

Correctness: just like for QUICKSORT

Time complexity:
Best case: we always partition equally
T (n) = T (n/2) + n, T (1) = 1 and so T (n) = Θ(n) (better than sorting)
Worst case: one partition is always empty
T (n) = T (n − 1) + n, T (1) = 1 and so T (n) = Θ(n2)
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HOW TO CHOOSE GOOD PIVOTS
algorithm MOMSELECT(k , S, l , h):

if h − l ≤ 25 then use brute force
else

m← (h − l)/5
for i = 1 to m do

Mi ← MEDIANOFFIVE(Sl+5i−4...l+5i ) // brute force
// Note: M can and should be an in-place array (within S)

mom← MOMSELECT(m/2,M, 1,m)
S1 ↔ Smom
p ← PARTITION(S, l, h)
if k = p then return Sk
else if k < p then MOMSELECT(k , S, l , p − 1)
else MOMSELECT(k , S, p + 1, h)

Obviously correct (why?)

mom is larger [smaller] than about (h − l)/10 block-of-five medians
Each block median is larger [smaller] than 2 other elements in its block
So mom is larger [smaller] than 3(h − l)/10 elements in S and so cannot
be farther than 7(h − l)/10 elements from the perfect pivot
So T (n) = T (n/5) + T (7n/10) + n ⇒ T (n) = 10 × c × n ⇒ T (n) = Θ(n)

Note in passing: T (n) = T (n/3) + T (2n/3) + n ⇒ T (n) = Θ(n log n)
If QUICKSORT uses MOMSELECT to choose pivot then it gets down to
O(n log n) worst-case complexity (optimal)
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FAST MATRIX MULTIPLICATION

With A and B n × n matrices compute C = A × B such that
Ci,j =

∑n
k−1 Ai,k × Bk,j

Straightforward algorithm of complexity O(n3)

Obvious lower bound Ω(n2)

Divide and conquer approach:(
A←↑ A→↑
A←↓ A→↓

)
×
(

B←↑ B→↑
B←↓ B→↓

)
=

(
C←↑ C→↑
C←↓ C→↓

)
algorithm MATRIXMUL(n, A, B):

if n = 2 then return A× B (brute force)
else

Partition A into A←↑,A→↑,A←↓,A→↓
Partition B into B←↑,B→↑,B←↓,B→↓
C←↑ ← MATRIXMUL(n/2,A←↑,B←↑)+MATRIXMUL(n/2,A→↑,B←↓)
C→↑ ← MATRIXMUL(n/2,A←↑,B→↑)+MATRIXMUL(n/2,A→↑,B→↓)
C←↓ ← MATRIXMUL(n/2,A←↓,B←↑)+MATRIXMUL(n/2,A→↓,B→↓)
C→↓ ← MATRIXMUL(n/2,A←↓,B→↑)+MATRIXMUL(n/2,A→↓,B→↓)
Combine C←↑,C→↑,C←↓,C→↓ into C
return C

T (n) = 8T (n/2) + n2,T (2) = 8

⇒ T (n) = O(n3) (bummer!)
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FAST MATRIX MULTIPLICATION (CONT’D)

To improve complexity we try to compute C←↑,C→↑,C←↓,C→↓ using less
than 8 matrix multiplication operations
Strassen’s definitions:

P = (A←↑ + A→↑)(B←↑ + B→↓) so C←↑ = P + S − T + V
Q = (A→↑ + A→↓)B←↑ C→↑ = R + T
R = A←↑(B→↑–B→↓) C→↑ = Q + S
S = A→↓(B→↑–B←↑) C→↓ = P + R − Q + U
T = (A←↑ + A→↑)B→↓
U = (A→↑–A←↑)(B←↑ + B→↑)
V = (A→↑–A→↓)(B→↑ + B→↓)

Only 7 multiplication operations!
T (n) = 7T (n/2) + n2,T (2) = 8 ⇒ T (n) = O(nlog7) = O(n2.81)

Subsequent algorithms were able to bring complexity down to O(n2.373)

Trick used: split into fewer (but less obvious) sub-problems
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LARGE INTEGER MULTIPLICATION

Manipulate big integers → represented by arrays of n digits
Obvious lower bound for addition and multiplication: Ω(n)
The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n2))

Divide and conquer approach:
Let u and v be two n-digit integers
Let m = n/2 and let u = x × 10m + y and v = w × 10m + z
It follows that
u × v = (x × 10m + y)(w × 10m + z) = xw × 102m + (xz + yw)× 10m + yz

algorithm INTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then return u × v
else

x ← u DIV 10m // most significant m digits
y ← u REM 10m // least significant m digits
w ← v DIV 10m

z ← v REM 10m

return INTMUL(m, x ,w)× 102m

+(INTMUL(m, x , z)
+INTMUL(m, y ,w))× 10m

+INTMUL(m, y , z)

Running time:
T (n) = 4T (n/2) + n,
T (2) = 4

Complexity: O(n2)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 10 / 13



LARGE INTEGER MULTIPLICATION

Manipulate big integers → represented by arrays of n digits
Obvious lower bound for addition and multiplication: Ω(n)
The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n2))
Divide and conquer approach:

Let u and v be two n-digit integers
Let m = n/2 and let u = x × 10m + y and v = w × 10m + z
It follows that
u × v = (x × 10m + y)(w × 10m + z) = xw × 102m + (xz + yw)× 10m + yz

algorithm INTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then return u × v
else

x ← u DIV 10m // most significant m digits
y ← u REM 10m // least significant m digits
w ← v DIV 10m

z ← v REM 10m

return INTMUL(m, x ,w)× 102m

+(INTMUL(m, x , z)
+INTMUL(m, y ,w))× 10m

+INTMUL(m, y , z)

Running time:
T (n) = 4T (n/2) + n,
T (2) = 4

Complexity: O(n2)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 10 / 13



LARGE INTEGER MULTIPLICATION

Manipulate big integers → represented by arrays of n digits
Obvious lower bound for addition and multiplication: Ω(n)
The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n2))
Divide and conquer approach:

Let u and v be two n-digit integers
Let m = n/2 and let u = x × 10m + y and v = w × 10m + z
It follows that
u × v = (x × 10m + y)(w × 10m + z) = xw × 102m + (xz + yw)× 10m + yz

algorithm INTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then return u × v
else

x ← u DIV 10m // most significant m digits
y ← u REM 10m // least significant m digits
w ← v DIV 10m

z ← v REM 10m

return INTMUL(m, x ,w)× 102m

+(INTMUL(m, x , z)
+INTMUL(m, y ,w))× 10m

+INTMUL(m, y , z)

Running time:
T (n) = 4T (n/2) + n,
T (2) = 4

Complexity: O(n2)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 10 / 13



LARGE INTEGER MULTIPLICATION (CONT’D)

Improvement:
Let p1 = xw , p2 = yz, p3 = (x + y)(w + z)
Then p3 − p1 − p2 = (x + y)(w + z)–xw–yz = xz + yw
Then p = (x × 10m + y)(w × 10m + z) =
xw × 102m + (xz + yw)× 10m + yz = p1102m + (p3 − p1 − p2)10m + p2

algorithm FASTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then

return u × v
else

x ← u DIV 10m

y ← u REM 10m

w ← v DIV 10m

z ← v REM 10m

p1 = FASTMUL(m, x ,w)
p2 = FASTMUL(m, y , z)
p3 = FASTMUL(m, x + y ,w + z)
return p1102m + (p3− p1− p2)10m + p2

Running time:
T (n) = 3T (n/2) + n,
T (2) = 4

Complexity:
O(nlog 3) = O(n1.585)
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TROMINO TILING

Tile a bathroom floor (“board”) with trominos without cover-
ing the drain (designated square on the board)
algorithm TILE(B, n, L): // B is the n × n board, L is the drain location

if n = 2 then
Tile with one tromino without covering L

else
Divide B into 4 n/2× n/2 sub-boards B1, . . . , B4
Place a tromino to cover one square on each board that does not
contain L
Let L1, . . . L4 be the squares on each sub-board that are either
covered or L
for i = 1 to 4 do

TILE(Bi ,n/2,Li )

Running time/trominoes used:
T (n) = 4T (n/2) + 1, T (2) = 1
T (n) = 1/3(n2 − 1)
Much better than the trial and error approach

Tromino

1st Tromino to be placed
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WHEN NOT TO USE DIVIDE AND CONQUER

Divide and conquer does not work for everything
The crux of the technique is the ability to divide a problem into-sub
problems
Therefore divide and conquer is not the right thing to do when:

The size of sub-problems is the same (or larger) than the size of the original
problem

Example: initial version of matrix or integer multiplication
Dramatic example: computing Fibonacci numbers

When the process of splitting into sub-problems takes too much time
When the process of combining the sub-solutions takes too much time
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