Greedy Algorithms

Stefan D. Bruda

CS 317, Fall 2024

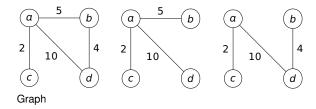
THE GREEDY TECHNIQUE

- Typically suitable to for optimization problems
- Builds the solution iteratively
- Makes a locally optimum choice in ech iteration in the hope that all local optima will lead to a global optimum
- Guaranteed to give a "good" solution, but does not guarantee an optimal solution for all optimization problems

```
algorithm GREEDY(A: set of candidates):solution \leftarrow \emptysetwhile solution not complete dox \leftarrow SELECTBEST(A) (local optimum)A \leftarrow A \setminus xif FEASIBLE(solution \cup x) thenL solution \leftarrow solution \cup x
```

MINIMUM-COST SPANNING TREES

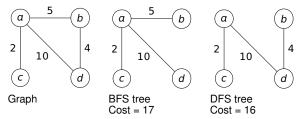
 A spanning tree of a graph G is a connected acyclic subgraph of G that contains all the vertices



- Problem: Given a weighted undirected connected graph G
- Question: Find a spanning tree of G with minimum cost
 - Many applications including transportation networks, computer networks, electrical grids, even financial markets

MINIMUM-COST SPANNING TREES

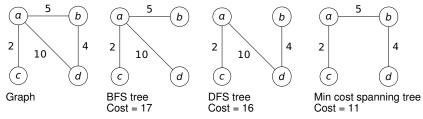
 A spanning tree of a graph G is a connected acyclic subgraph of G that contains all the vertices



- Problem: Given a weighted undirected connected graph G
- Question: Find a spanning tree of G with minimum cost
 - Many applications including transportation networks, computer networks, electrical grids, even financial markets

MINIMUM-COST SPANNING TREES

 A spanning tree of a graph G is a connected acyclic subgraph of G that contains all the vertices



- Problem: Given a weighted undirected connected graph G
- Question: Find a spanning tree of G with minimum cost
 - Many applications including transportation networks, computer networks, electrical grids, even financial markets

KRUSKAL'S ALGORITHM

- For a given weighted graph G = (V, E, w):
 - Choose an edge e of minimum weight w(e)
 - If the edge does not create a cycle add it to the tree

KRUSKAL'S ALGORITHM

- For a given weighted graph G = (V, E, w):
 - Choose an edge e of minimum weight w(e)
 - If the edge does not create a cycle add it to the tree

```
 \begin{aligned} & \textbf{algorithm} \; \mathsf{KRUSKAL}(G = (V, E, w)) \text{:} \\ & \begin{matrix} T \leftarrow \emptyset \\ c \leftarrow 0 \\ L \leftarrow E \\ & \textbf{while} \; |T| \leq n-1 \; \textbf{do} \\ & \begin{matrix} \mathsf{Select} \; e \in L, \; w(e) = \min\{w(x) : x \in R\} \\ L \leftarrow L \setminus \{e\} \\ & \mathsf{if} \; T \cup e \; \mathsf{does} \; \mathsf{not} \; \mathsf{contain} \; \mathsf{cycles} \; \mathsf{then} \\ & \begin{matrix} T \leftarrow T \cup \{e\} \\ c \leftarrow c + w(e) \end{matrix} \end{aligned}
```

- Still to implement:
 - Find an edge with a minimum weight
 - Detect cycles

KRUSKAL'S ALGORITHM

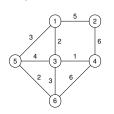
- For a given weighted graph G = (V, E, w):
 - Choose an edge e of minimum weight w(e)
 - If the edge does not create a cycle add it to the tree

- Still to implement:
 - Find an edge with a minimum weight
 - Detect cycles
- Data structures needed:
 - List of edges sorted by weight
 - Disjoint sets representing each connected component

KRUSKAL'S ALGORITHM EXAMPLE

(5)

Graph:



Start: six singletons

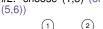
- (3) (4)
- 6

#1: choose (3,4)

(5)

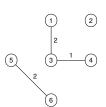
6

#2: choose (1,3) (or



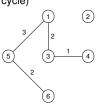
- 5 3 1 4
 - 6

#3: choose (5,6) (or (1,3))

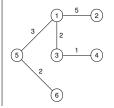


#4: choose (1,5) (or (3,6), for a different tree)

#5: choose and ignore (3,6) (creates cycle)



#6: choose (1,2) and done



KRUSKAL'S ALGORITHM (CONT'D)


```
\begin{array}{c|c} \textbf{algorithm} \ \mathsf{KRUSKAL}(G = (V, E, w)) \text{:} \\ T \leftarrow \emptyset \\ c \leftarrow 0 \\ L \leftarrow \mathsf{MAKEQUEUE}(E) \\ \textbf{for } i = 1 \ \textbf{to } n \ \textbf{do} \ \mathsf{MAKESET}(i) \\ i \leftarrow 1 \\ \textbf{while } i \leq n-1 \ \textbf{do} \\ & (u, v) \leftarrow \mathsf{DEQUEUE}(L) \\ s_1 \leftarrow \mathsf{FINDSET}(u) \\ s_2 \leftarrow \mathsf{FINDSET}(v) \\ \textbf{if } s_1 \neq s_2 \ \textbf{then} \\ & \mathsf{UNION}(s_1, s_2) \\ & T \leftarrow T \cup \{(u, v)\} \\ & c \leftarrow c + w((u, v)) \\ & i \leftarrow i+1 \end{array}
```

KRUSKAL'S ALGORITHM (CONT'D)


```
 \begin{aligned} & \textbf{algorithm} \ \mathsf{KRUSKAL}(G = (V, E, w)) \text{:} \\ & T \leftarrow \emptyset \\ & c \leftarrow 0 \\ & L \leftarrow \mathsf{MAKEQUEUE}(\mathsf{E}) \\ & \textbf{for} \ i = 1 \ \textbf{to} \ n \ \textbf{do} \ \mathsf{MAKESET}(i) \\ & i \leftarrow 1 \\ & \textbf{while} \ i \leq n-1 \ \textbf{do} \\ & (u,v) \leftarrow \mathsf{DEQUEUE}(L) \\ & s_1 \leftarrow \mathsf{FINDSET}(u) \\ & s_2 \leftarrow \mathsf{FINDSET}(v) \\ & \textbf{if} \ s_1 \neq s_2 \ \textbf{then} \\ & & \mathsf{UNION}(s_1, s_2) \\ & T \leftarrow T \cup \{(u,v)\} \\ & c \leftarrow c + w((u,v)) \\ & i \leftarrow i + 1 \end{aligned}
```

- Choice of implementation for the priority queue:
 - Sorted list: O(n log n) to create, O(1) to extract minimum
 - Min heap: O(n) to create, O(log n) to extract minimum
- Running time (|V| = n, |E| = m):
 - With sorted list: $T(n) = m \log m + n + m(1 + 2 \log n) = O(m \log n)$
 - With heap: $T(n) = m + n + m(\log m + 2\log n) = O(m \log n)$

KRUSKAL'S ALGORITHM (CONT'D)


```
 \begin{aligned} & \textbf{algorithm} \ \mathsf{KRUSKAL}(G = (V, E, w)) \text{:} \\ & T \leftarrow \emptyset \\ & c \leftarrow 0 \\ & L \leftarrow \mathsf{MAKEQUEUE}(\mathsf{E}) \\ & \textbf{for } i = 1 \ \textbf{to} \ n \ \textbf{do} \ \mathsf{MAKESET}(i) \\ & i \leftarrow 1 \\ & \textbf{while } i \leq n-1 \ \textbf{do} \\ & \underbrace{(u,v) \leftarrow \mathsf{DEQUEUE}(L)}_{S_1 \leftarrow \mathsf{FINDSET}(u)} \\ & s_2 \leftarrow \mathsf{FINDSET}(v) \\ & \textbf{if } s_1 \neq s_2 \ \textbf{then} \\ & \underbrace{\mathsf{UNION}(s_1, s_2)}_{T \leftarrow T \cup \{(u,v)\}} \\ & c \leftarrow c + w((u,v)) \\ & i \leftarrow i + 1 \end{aligned}
```

- Choice of implementation for the priority queue:
 - Sorted list: O(n log n) to create, O(1) to extract minimum
 - Min heap: O(n) to create, O(log n) to extract minimum
- Running time (|V| = n, |E| = m):
 - With sorted list: $T(n) = m \log m + n + m(1 + 2 \log n) = \frac{O(m \log n)}{O(n \log n)}$
 - With heap: $T(n) = m + n + m(\log m + 2\log n) = O(m\log n)$

- Correctness:
 - Loop invariant: The graph induced by each disjoint set S in (S, T) is a minimum-cost spanning tree for (S, E)
 - Kruskal's algorithm maintain a forest of minimum-cost spanning trees, collapsing it progressively into a single overall minimum-cost spanning tree

PRIM'S ALGORITHM

- Maintains a single, partial minimum-cost spanning tree
 - Start with a single vertex and no edges
 - Expand the tree by greedily choosing the minimum weight edge with an end in the tree and the other end outside the tree

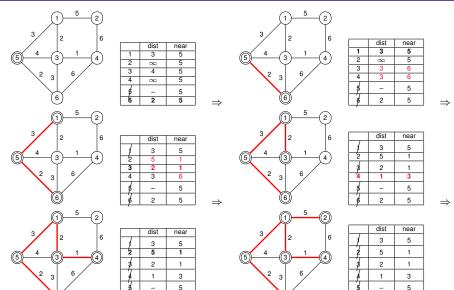
```
 \begin{array}{c|c} \textbf{algorithm} \ \mathsf{PRIM}(G = (V, E, w), v_0 \in V) \textbf{:} \\ T \leftarrow \emptyset \\ c \leftarrow 0 \\ S \leftarrow \{v_0\} \\ \textbf{while} \ S \neq V \ \textbf{do} \\ \\ \mathsf{Select} \ v \in V \setminus S \ \mathsf{nearest} \ \mathsf{to} \ S \\ \mathsf{Let} \ u \in S \ \mathsf{be} \ \mathsf{the} \ \mathsf{nearest} \ \mathsf{vertex} \ \mathsf{to} \ v \\ S \leftarrow S \cup \{v\} \\ T \leftarrow T \cup \{(v, u)\} \\ c \leftarrow c + w((u, v)) \end{array}
```

- To keep track of candidate edges for each vertex outside the tree we keep track of:
 - Its minimum distance from the tree
 - The edge that realizes that minimum distance

PRIM'S ALGORITHM EXAMPLE

2

5



PRIM'S ALGORITHM (CONT'D)


```
algorithm PRIM(G = (V, E, w), v_0 \in V):
        T \leftarrow \emptyset
       for i = 0 to n do
               dist_i \leftarrow w(i, v_0)
              nearest_i \leftarrow v_0
       HEAPIFY(dist) (optional)
      for i = 1 to n - 1 do
               v \leftarrow \mathsf{DEQUEUE}(\mathit{dist})
              T \leftarrow T \cup \{(v, nearest_v)\}\ c \leftarrow c + w((v, nearest_v)) foreach neighbor x of v outside tree
              do
                     if w(v, x) < dist_x then
                           dist_x \leftarrow w(v, x)

nearest_x \leftarrow v

UPDATE(dist_x)
                                                         (optional)
```

- Can organize dist as:
 - Heap: O(n) to heapify and O(log n) to update but O(1) to get the minimum
 - Plain array: no need to heapify or update, but O(n) to get the minimum
- Running time (|V| = n, |E| = m):
 - The foreach loop runs O(m) times overall (amortized)
 - Heap: $T(n) = n + n + n \log n + m \log n = O(m \log n)$
 - Array: $T(n) = n + n \times n + m = O(n^2)$

KRUSKAL AND PRIM (CONT'D)

- Correctness of Prim:
 - Loop invariant: The partial tree is a minimum-cost spanning tree for the vertices it contains
- Comparison between Prim and Kruskal:

		Running time	Sparse graphs	Dense graphs
			$(m = o(n^2/\log n))$	$(m=O(n^2))$
Kruskal		$O(m \log n)$	$O(n \log n)$	$O(n^2 \log n)$
Prim	Array	$O(n^2)$	$O(n^2)$	$O(n^2)$
	Heap	$O(m \log n)$	$O(n \log n)$	$O(n^2 \log n)$

- No difference between Kruskal and Prim using a heap on sparse graphs
- Notable advantage for Prim using an array on dense graphs

THERE IS ONLY ONE MINIMUM SPANNING TREE!

Lemma

If all the edge weights in a connected graph G are distinct then G has a unique minimum-cost spanning tree

- Proof by contrapositive:
 - Let T and T' be two minimum-cost spanning trees of G
 - Let e and e' be the minimum weight edge in $T \setminus T'$ and $T' \setminus T$ respectively, $w(e) \leq w(e')$
 - $T' \cup \{e\}$ must contain cycle C that goes through e, let $e'' \in C \setminus T$
 - It must be that $w(e'') \ge w(e') \ge w(e)$ (since $e'' \in T' \setminus T$)
 - Let $T'' = T' \cup \{e\} \setminus \{e''\}$ (greedy replace)
 - T" is a spanning tree (we replaced one edge in a cycle with another in the same cycle)
 - w(T'') = w(T') + w(e) w(e'') so $w(T'') \le w(T')$ (since $w(e) \le w(e'')$)
 - But T' is a minimum-cost spanning tree, so it must be that w(T") = w(T') and so w(e) = w(e")

THERE IS ONLY ONE MINIMUM SPANNING TREE!

Lemma

If all the edge weights in a connected graph G are distinct then G has a unique minimum-cost spanning tree

- Proof by contrapositive:
 - Let T and T' be two minimum-cost spanning trees of G
 - Let e and e' be the minimum weight edge in $T \setminus T'$ and $T' \setminus T$ respectively, $w(e) \leq w(e')$
 - $T' \cup \{e\}$ must contain cycle C that goes through e, let $e'' \in C \setminus T$
 - It must be that $w(e'') \ge w(e') \ge w(e)$ (since $e'' \in T' \setminus T$)
 - Let $T'' = T' \cup \{e\} \setminus \{e''\}$ (greedy replace)
 - T" is a spanning tree (we replaced one edge in a cycle with another in the same cycle)
 - w(T'') = w(T') + w(e) w(e'') so $w(T'') \le w(T')$ (since $w(e) \le w(e'')$)
 - But T' is a minimum-cost spanning tree, so it must be that w(T") = w(T') and so w(e) = w(e")
- This kind of reasoning also works for not necessarily distinct edge weights as long as we use a consistent way of breaking ties

THERE IS ONLY ONE ALGORITHM!

- Edge classification:
 - Useless: $(u, v) \notin F$ with u and v in the same connected component of F
 - Safe: minimum-weigth (u, v) with only u or v in a connected component of F
- Generic strategy for the minimum-cost spanning tree: Maintain an acyclic subgraph F of G such that F is a subgraph of the minimum-cost spanning tree of G by always choosing safe edges (and never useless edges)

THERE IS ONLY ONE ALGORITHM!

- Edge classification:
 - Useless: $(u, v) \notin F$ with u and v in the same connected component of F
 - Safe: minimum-weigth (u, v) with only u or v in a connected component of F
- Generic strategy for the minimum-cost spanning tree: Maintain an acyclic subgraph F of G such that F is a subgraph of the minimum-cost spanning tree of G by always choosing safe edges (and never useless edges)

Lemma

The minimum-cost spanning tree of G contains every safe edge

- Greedy-replace proof technique:
 - Show that the minimum-cost spanning tree of any $S \subseteq G$ contains the safe edge e for S
 - Let T be a minimum-cost spanning tree of G not containing e
 - It must have an edge e', w(e') > w(e) that connects S with the rest of G
 - Then $T' = T \setminus \{e'\} \cup \{e\}$ is a spanning tree with $w(T') \le w(T)$, a contradiction

THERE IS ONLY ONE ALGORITHM!

- Edge classification:
 - Useless: $(u, v) \notin F$ with u and v in the same connected component of F
 - Safe: minimum-weigth (u, v) with only u or v in a connected component of F
- Generic strategy for the minimum-cost spanning tree: Maintain an acyclic subgraph F of G such that F is a subgraph of the minimum-cost spanning tree of G by always choosing safe edges (and never useless edges)

Lemma

The minimum-cost spanning tree of G contains every safe edge

- Greedy-replace proof technique:
 - Show that the minimum-cost spanning tree of any $S \subseteq G$ contains the safe edge e for S
 - Let T be a minimum-cost spanning tree of G not containing e
 - It must have an edge e', w(e') > w(e) that connects S with the rest of G
 - Then $T' = T \setminus \{e'\} \cup \{e\}$ is a spanning tree with $w(T') \le w(T)$, a contradiction

Lemma

The minimum-cost spanning tree contains no useless edge

SINGLE-SOURCE SHORTEST PATH

- We are given a directed, weighted graph G = (V, E, w)
 - Notation: A path $p = \langle v_0, v_1, \dots, v_k \rangle$ connects v_0 and v_1 and we write $v_0 \overset{p}{\leadsto} v_k$
 - The shortest-path weight from some vertex *u* to some vertex *v* is:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there exists a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- A shortest path from u to v is a path p such that $u \stackrel{p}{\leadsto} v$ and $w(p) = \delta(u, v)$
- When we are interested in finding shortest paths in a graph we solve a shortest-path problem
 - Single source, single destination (e.g., finding the shortest way to travel from point A to point B)
 - Single source, all destinations (e.g., broadcasting a message from one node in a network to all the other nodes)
 - All pairs shortest path (e.g., finding the fastest way to send information from any node in a network to any other node)

THE SINGLE-SOURCE SHORTEST-PATH PROBLEM

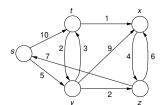
Lemma

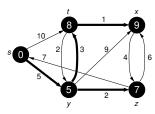
One shortest path contains other shortest paths within it. Formally, if $p = \langle v_0, v_1, \dots, v_i, \dots, v_i, \dots, v_k \rangle$ is a shortest part from v_0 to v_k then the sub-path $\langle v_i, \dots, v_i \rangle$ of p is a shortest path between v_i and v_i

 The lemma implies that the single source, single destination variant does not make sense since solving it effectively solves the single source, all destinations variant:

Input: a weighted graph *G* and a source node *s*:

Output: the shortest paths between *s* and any other vertex in *G*:



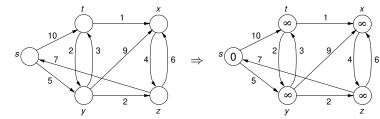


• The lemma also ensures that a greedy approach will work

INITIALIZATION

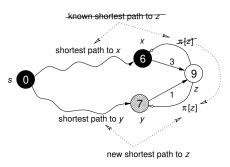
For each vertex v in the input graph, we keep two values:

- d_v is a shortest-path estimate, initially ∞ for all the vertices but s
- π_{ν} is the predecessor of ν in the shortest path, initially NIL
 - our shortest path algorithm will set π_{ν} for all the vertices in the graph
 - then, the predecessor link from some vertex v to s runs backwards along a shortest path from s to v



RELAX!

- All algorithms that solve the shortest-path problem are built around the relaxation technique
- Simple idea: if we find something better, we go for it



algorithm RELAX
$$(y, z, w \in V; d, \pi)$$
:
if $d_z > d_y + w(y, z)$ then
$$d_z \leftarrow d_y + w(y, z)$$
DECREASEKEY (Q, z, d_z)

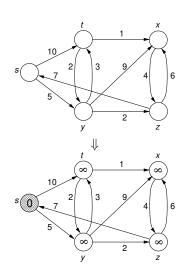
$$\pi_z \leftarrow y$$

DIJKSTRA'S ALGORITHM

• Dijkstra's algorithm solves the single-source shortest-path problem on a weighted, directed graph G = (V, E, w) with positive edge weights

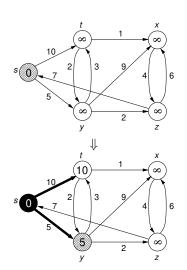
- The algorithm maintains a set S of vertices whose final shortest path from the source s has been already determined
- The algorithm (greedily) keeps selecting the most promising edge $u \in V \setminus S$, adds it to S, and relaxes all the edges leaving u
 - The "most promising" edge is the one with minimum d_{ij}
 - Priority queue Q for quick access to this most promising edge

DIJKSTRA'S ALGORITHM (CONT'D)

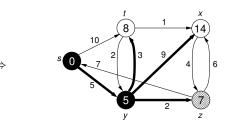


```
\begin{array}{c|c} \textbf{algorithm} \ \mathsf{DIJKSTRA}(G = (V, E, w), s \in V; \pi) \text{:} \\ \hline & \mathsf{INITIALIZESINGLESOURCE}(G, s) \\ S \leftarrow \emptyset \\ Q \leftarrow \mathsf{MAKEQUEUE}(V, d) \\ \textbf{while} \ \neg \mathsf{ISEMPTY}(Q) \ \textbf{do} \\ & u \leftarrow \mathsf{DEQUEUE}(Q) \\ S \leftarrow S \cup \{u\} \\ & \mathsf{foreach} \ v \ \mathsf{adjacent} \ \mathsf{to} \ u, v \not \in S \ \textbf{do} \\ & \mid \mathsf{RELAX}(u, v, w) \end{array}
```

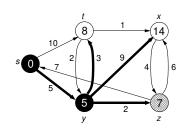
DIJKSTRA'S ALGORITHM (CONT'D)

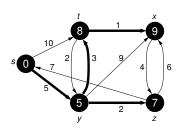


```
 \begin{array}{l} \textbf{algorithm} \ \mathsf{Dijkstra}(G = (V, E, w), s \in V; \pi) \text{:} \\ | \ \mathsf{InitializeSingleSource}(G, s) \\ | S \leftarrow \emptyset \\ | Q \leftarrow \mathsf{MakeQueue}(V, d) \\ | \ \textbf{while} \neg \mathsf{lsEmpty}(Q) \ \textbf{do} \\ | \ | \ u \leftarrow \mathsf{DeQueue}(Q) \\ | \ S \leftarrow S \cup \{u\} \\ | \ \textbf{foreach} \ v \ \text{adjacent to} \ u, v \not \in S \ \textbf{do} \\ | \ | \ \mathsf{Relax}(u, v, w) \end{aligned}
```

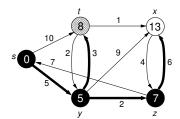


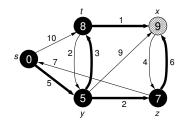
DIJKSTRA'S ALGORITHM (CONT'D)





while $\neg ISEMPTY(Q)$ do...





DIJKSTRA'S ALGORITHM ANALYSIS

• Dijkstra's algorithm relies heavily of operations on the queue Q, namely ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, $t_+(n)$, $t_-(n)$, $t_x(n)$, respectively (with n = |V|, m = |E|)

• Total running time: $O(n \times t_+(n) + n \times t_-(n) + m \times t_x(n))$

DIJKSTRA'S ALGORITHM ANALYSIS

• Dijkstra's algorithm relies heavily of operations on the queue Q, namely ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, $t_+(n)$, $t_-(n)$, $t_x(n)$, respectively (with n = |V|, m = |E|)

- Total running time: $O(n \times t_+(n) + n \times t_-(n) + m \times t_x(n))$
- Correctness, or we always pick the right vertex: Let u_i and u_{i+1} be the vertices returned by two successive calls to DEQUEUE; then $d_{u_i} \leq d_{u_{i+1}}$ just after the extraction
 - Either $(u_i, u_{i+1}) \in E$ and u_{i+1} is relaxed, so $d_{u_{i+1}} = d_{u_i} + w((u_i, u_{i+1})) \ge d_{u_i}$
 - Or u_{i+1} is not relaxed so it is already in the queue so $d_{u_{i+1}} \geq d_{u_i}$
 - Trivial generalization for u_i and u_{i+k}
 - No vertex is dequeued more than once
 - Proof only works for positive edge weights

ANALYSIS (CONT'D)

 The performance of Dijkstra's algorithm depends heavily of how the priority queue is implemented (again!)

	<i>t</i> ₊ (<i>n</i>)	t_(n)	$t_{\scriptscriptstyle X}(n)$
Array queue	<i>O</i> (1)	O(n)	<i>O</i> (1)
Heap queue	$O(\log n)$	$O(\log n)$	$O(\log n)$

	Running time	Sparse graphs	Dense graphs
		$(m = o(n^2/\log n))$	$(m=O(n^2))$
Array Q	$O(n^2+m)$	$O(n^2)$	$O(n^2)$
Heap Q	$O((n+m)\log n)$	$O(m \log n)$	$O(n^2 \log n)$

DATA COMPRESSION

- Represent data using the minimum amount of bits
- Lossy
 - Compressed data cannot be restored in its original form
 - Significant compression ratio
 - Mostly used for multimedia encoding
 - Examples: JPEG (Joint Photographic Experts Group) and MPEG (Moving Picture Experts Group)

Lossless

- Compressed data can be perfectly reconstructed
- Lower compression ratio
- Examples: Zip, Gif, Huffman encoding
- The Huffman code is an optimal variable-length prefix code
 - Minimizes the average number of bits/character based on the character frequencies of occurrence
 - Code system with the prefix property (prefix code): no code is a prefix of any other code
 - Necessary for decoding variable-length codes
 - Example: A, B, C, D can be encoded respectively as 0, 10, 110, 111, but not as 1, 10, 110, 111 (since the code for A would be a prefix for B, C and D)
 - Note in passing that fixed length codes (e.g. 00, 01, 10, 11) are all prefix codes

THE HUFFMAN CODE

- Example: Five characters with their frequency:
 - A (5%), B (25%), C (20%), D (15%), E (35%)
 - Traditional (fixed-length encoding): A=000, B=001, C=010, D=011, E=100 (3 bits/character)
- Prefix code tree:
 - Choose and remove the letter with highest frequency, assign as left child
 - Repeat for the right child
 - Label left branches with 0 and right branches with 1
 - Code for a character is the path from root to letter

and the second second second particles				
algorithm $HUFFMANLITE(C)$:	Letter	Freq	Code	Weighted # bits
//C = set of n characters	Α	0.05	1111	$4 \times 0.05 = 0.2$
$H \leftarrow MAKEQUEUE(C)$ 0 \swarrow 1	В	0.25	10	$2 \times 0.25 = 0.5$
$T \leftarrow \text{new node}$ (E) $_0 \bigcirc _1$	С	0.20	110	$3 \times 0.20 = 0.6$
for $i = 1$ to $n - 1$ do	D	0.15	1110	$4 \times 0.15 = 0.6$
$T.left \leftarrow DEQUEUE(H)$ B 0 1	E	0.35	0	$1 \times 0.35 = 0.35$
$\begin{array}{c c} T.right \leftarrow \text{ new node} & C & 0 & 1 \\ \hline T \leftarrow T.right & & & & & & & & & & & & & & & & & & &$	Ave	erane hit	s per lett	er.
(D) (A)	0.70	105106	6+0.6+0.	35_2 25
$T.right \leftarrow DEQUEUE(H)$				
T.right ← DEQUEUE(H) // Set codes in a BFS traversal	Imp	proveme	nt of 25%	, 0

Correctness: letters at different depths = different all-1 prefixes before 0

• Running time: $\Theta(n \log n)$ (both array and heap)

THE HUFFMAN CODE (CONT'D)

 We can do better by assigning frequencies to internal nodes and choosing the best two frequencies to be the children of a new node:

```
algorithm HUFFMAN(C):

// C = set of n characters

H \leftarrow \text{MAKEQUEUE}(C)

for i = 1 to n - 1 do

T \leftarrow \text{new node}

T. left \leftarrow \text{DEQUEUE}(H)

T. right \leftarrow \text{DEQUEUE}(H)

T. freq \leftarrow T. left. freq + T. right. freq

INSERT(T freq)

// Set codes in a BFS traversal
```

• Running time: $\Theta(n^2)$ (sorted list) or $\Theta(n \log n)$ (heap)

Letter	Freq	Code	Weighted # bits
Α	0.05	000	$3 \times 0.05 = 0.15$
В	0.25	10	$2\times0.25=0.5$
С	0.20	01	$2 \times 0.20 = 0.4$
D	0.15	001	$3 \times 0.15 = 0.45$
Е	0.35	11	$2\times0.35=0.7$

- Average bits per letter: 2.2, 27% improvement
- Correctness: different paths ensure at least one different bit

OPTIMAL TEXT COMPRESSION

- Huffman's algorithm produces an optimal tree
 - Show that the two least frequent characters have to be siblings in an optimal tree using a greedy-replace technique
 - Proceed upward by induction
 - See textbook
- Text compression algorithm:
 - Calculate the frequency of all letters in the text
 - Construct the Huffman tree
 - Encode all the text using the codes obtained from the Huffman tree
- Text recovery algorithm:
 - Traverse the Huffman tree from root to a leaf according to the input bits
 - Output the leaf label
 - Repeat traversal for as long as there are bits in the input
 - Note: this is why we need a code system with the prefix property!

THE KNAPSACK PROBLEM

- Given $w = \langle w_1, w_2, \dots, w_n \rangle$ and $p = \langle p_1, p_2, \dots, p_n \rangle$, find $x = \langle x_1, x_2, \dots, x_n \rangle$ such that $\sum_{i=1}^n x_i p_i$ is maximized subject to $\sum_{i=1}^n x_i w_i \leq C$
 - Given n objects, each with a corresponding weight w_i and profit p_i and a knapsack of specific capacity C, choose the objects (or fractions) that you can fit in the knapsack so that the total profit is maximized
- Two versions:
 - Fractional knapsack: $0 \le x_i \le 1$
 - 0/1 knapsack: x_i ∈ {0, 1}

FRACTIONAL KNAPSACK

- Greedy strategies:
 - Take objects one at a time in increasing order of their weights, until the knapsack is full (a fraction may need to be taken for the last object)
 - Take the objects in decreasing order of their profits
 - Take the objects in decreasing order of their profits per unit weight ratio

• Example:
$$w = \langle 5, 10, 20 \rangle$$
 $C = 30$ $p = \langle 50, 60, 140 \rangle$ $p/w = \langle 10, 6, 7 \rangle$

- **1** $x = \langle 1, 1, 15/20 \rangle, P = 50 + 60 + 140 \times 15/20 = 215$
- x = (0, 1, 1), P = 60 + 140 = 200
- In fact it can be shown that the third strategy will always guarantee an optimal solution
 - Suppose that we have an optimal solution that uses some amount of the lower value density object
 - Then we substitute that with the same weight of the higher value density object and we obtain a better solution, a contradiction

0/1 KNAPSACK

• By w:
$$x = \langle 1, 1, 0 \rangle$$
, $P = 110$

• By
$$p$$
: $x = (0, 1, 1), P = 200$

• By
$$p/w$$
: $x = \langle 1, 0, 1 \rangle$, $P = 190$

- By w: $x = \langle 1, 1, 0 \rangle$, P = 130
- By p: $x = \langle 0, 0, 1 \rangle$, P = 120
- By p/w: $x = \langle 1, 0, 0 \rangle$, P = 50

- - By w: x = (0, 0, 1), P = 15
 - By p: $x = \langle 1, 0, 0 \rangle$, P = 25
 - By p/w: x = (0, 1, 0), P = 24

 No greey strategy guarantees an optimal solution for the 0/1 knapsack problem

THE GREEDY-CHOICE PROPERTY

The greedy technique works only for those problems that have the greedy-choice property: We can assemble a globally optimal solution by making locally optimal (greedy) choices

- Goes hand in hand with the greedy-replace proof technique
- Many problems have the greedy-choice property, many more do not (such as the 0/1 knapsack)
- For some problems without the greedy-choice property may obtain a "good enough" solution for some reasonable definition of "good enough"
 - Good example: 0/1 knapsack
 - To be continued