
Greedy Algorithms

Stefan D. Bruda

CS 317, Fall 2024

THE GREEDY TECHNIQUE

Typically suitable to for optimization problems
Builds the solution iteratively
Makes a locally optimum choice in ech iteration in the hope that all local
optima will lead to a global optimum
Guaranteed to give a “good” solution, but does not guarantee an optimal
solution for all optimization problems

algorithm GREEDY(A: set of candidates):
solution← ∅
while solution not complete do

x ← SELECTBEST(A) (local optimum)
A← A \ x
if FEASIBLE(solution ∪ x) then

solution← solution ∪ x

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 1 / 29

MINIMUM-COST SPANNING TREES

A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

 b

c d

5

2
10

4

 b

c d

5

2
10

 b

c d

2
10

4

 b

c d

5

2 4

Graph

BFS tree DFS tree Min cost spanning tree
Cost = 17 Cost = 16 Cost = 11

Problem: Given a weighted undirected connected graph G
Question: Find a spanning tree of G with minimum cost

Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 2 / 29

MINIMUM-COST SPANNING TREES

A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

 b

c d

5

2
10

4

 b

c d

5

2
10

 b

c d

2
10

4

 b

c d

5

2 4

Graph BFS tree DFS tree

Min cost spanning tree

Cost = 17 Cost = 16

Cost = 11

Problem: Given a weighted undirected connected graph G
Question: Find a spanning tree of G with minimum cost

Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 2 / 29

MINIMUM-COST SPANNING TREES

A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

 b

c d

5

2
10

4

 b

c d

5

2
10

 b

c d

2
10

4

 b

c d

5

2 4

Graph BFS tree DFS tree Min cost spanning tree
Cost = 17 Cost = 16 Cost = 11

Problem: Given a weighted undirected connected graph G
Question: Find a spanning tree of G with minimum cost

Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 2 / 29

KRUSKAL’S ALGORITHM

For a given weighted graph G = (V ,E ,w):
Choose an edge e of minimum weight w(e)
If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← E
while |T | ≤ n − 1 do

Select e ∈ L, w(e) = min{w(x) : x ∈ R}
L← L \ {e}
if T ∪ e does not contain cycles then

T ← T ∪ {e}
c ← c + w(e)

Still to implement:
Find an edge with a minimum weight
Detect cycles

Data structures needed:
List of edges sorted by weight
Disjoint sets representing each connected component

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 3 / 29

KRUSKAL’S ALGORITHM

For a given weighted graph G = (V ,E ,w):
Choose an edge e of minimum weight w(e)
If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← E
while |T | ≤ n − 1 do

Select e ∈ L, w(e) = min{w(x) : x ∈ R}
L← L \ {e}
if T ∪ e does not contain cycles then

T ← T ∪ {e}
c ← c + w(e)

Still to implement:
Find an edge with a minimum weight
Detect cycles

Data structures needed:
List of edges sorted by weight
Disjoint sets representing each connected component

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 3 / 29

KRUSKAL’S ALGORITHM

For a given weighted graph G = (V ,E ,w):
Choose an edge e of minimum weight w(e)
If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← E
while |T | ≤ n − 1 do

Select e ∈ L, w(e) = min{w(x) : x ∈ R}
L← L \ {e}
if T ∪ e does not contain cycles then

T ← T ∪ {e}
c ← c + w(e)

Still to implement:
Find an edge with a minimum weight
Detect cycles

Data structures needed:
List of edges sorted by weight
Disjoint sets representing each connected component

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 3 / 29

KRUSKAL’S ALGORITHM EXAMPLE

Graph: Start: six singletons #1: choose (3,4) #2: choose (1,3) (or
(5,6))

1 2

3 45

6

5

2 6

1

3

4

2 3 6

1 2

3 45

6

1 2

3 45

6

1

1 2

3 45

6

2

1

#3: choose (5,6) (or
(1,3))

#4: choose (1,5) (or
(3,6), for a different
tree)

#5: choose and ig-
nore (3,6) (creates
cycle)

#6: choose (1,2) and
done

1 2

3 45

6

2

1

2

1 2

3 45

6

2

1

3

2

1 2

3 45

6

2

1

3

2

1 2

3 45

6

5

2

1

3

2

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 4 / 29

KRUSKAL’S ALGORITHM (CONT’D)

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← MAKEQUEUE(E)
for i = 1 to n do MAKESET(i)
i ← 1
while i ≤ n − 1 do

(u, v)← DEQUEUE(L)
s1 ← FINDSET(u)
s2 ← FINDSET(v)
if s1 ̸= s2 then

UNION(s1, s2)
T ← T ∪ {(u, v)}
c ← c + w((u, v))
i ← i + 1

Choice of implementation for the priority
queue:

Sorted list: O(n log n) to create, O(1) to
extract minimum
Min heap: O(n) to create, O(log n) to
extract minimum

Running time (|V | = n, |E | = m):
With sorted list:
T (n) = m logm + n + m(1 + 2 log n) =
O(m log n)
With heap:
T (n) = m + n + m(logm + 2 log n) =
O(m log n)

Correctness:
Loop invariant: The graph induced by each disjoint set S in (S,T) is a
minimum-cost spanning tree for (S,E)
Kruskal’s algorithm maintain a forest of minimum-cost spanning trees,
collapsing it progressively into a single overall minimum-cost spanning tree

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 5 / 29

KRUSKAL’S ALGORITHM (CONT’D)

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← MAKEQUEUE(E)
for i = 1 to n do MAKESET(i)
i ← 1
while i ≤ n − 1 do

(u, v)← DEQUEUE(L)
s1 ← FINDSET(u)
s2 ← FINDSET(v)
if s1 ̸= s2 then

UNION(s1, s2)
T ← T ∪ {(u, v)}
c ← c + w((u, v))
i ← i + 1

Choice of implementation for the priority
queue:

Sorted list: O(n log n) to create, O(1) to
extract minimum
Min heap: O(n) to create, O(log n) to
extract minimum

Running time (|V | = n, |E | = m):
With sorted list:
T (n) = m logm + n + m(1 + 2 log n) =
O(m log n)
With heap:
T (n) = m + n + m(logm + 2 log n) =
O(m log n)

Correctness:
Loop invariant: The graph induced by each disjoint set S in (S,T) is a
minimum-cost spanning tree for (S,E)
Kruskal’s algorithm maintain a forest of minimum-cost spanning trees,
collapsing it progressively into a single overall minimum-cost spanning tree

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 5 / 29

KRUSKAL’S ALGORITHM (CONT’D)

algorithm KRUSKAL(G = (V ,E ,w)):
T ← ∅
c ← 0
L← MAKEQUEUE(E)
for i = 1 to n do MAKESET(i)
i ← 1
while i ≤ n − 1 do

(u, v)← DEQUEUE(L)
s1 ← FINDSET(u)
s2 ← FINDSET(v)
if s1 ̸= s2 then

UNION(s1, s2)
T ← T ∪ {(u, v)}
c ← c + w((u, v))
i ← i + 1

Choice of implementation for the priority
queue:

Sorted list: O(n log n) to create, O(1) to
extract minimum
Min heap: O(n) to create, O(log n) to
extract minimum

Running time (|V | = n, |E | = m):
With sorted list:
T (n) = m logm + n + m(1 + 2 log n) =
O(m log n)
With heap:
T (n) = m + n + m(logm + 2 log n) =
O(m log n)

Correctness:
Loop invariant: The graph induced by each disjoint set S in (S,T) is a
minimum-cost spanning tree for (S,E)
Kruskal’s algorithm maintain a forest of minimum-cost spanning trees,
collapsing it progressively into a single overall minimum-cost spanning tree

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 5 / 29

PRIM’S ALGORITHM

Maintains a single, partial minimum-cost spanning tree
Start with a single vertex and no edges
Expand the tree by greedily choosing the minimum weight edge with an end
in the tree and the other end outside the tree

algorithm PRIM(G = (V ,E ,w), v0 ∈ V):
T ← ∅
c ← 0
S ← {v0}
while S ̸= V do

Select v ∈ V \ S nearest to S
Let u ∈ S be the nearest vertex to v
S ← S ∪ {v}
T ← T ∪ {(v , u)}
c ← c + w((u, v))

To keep track of candidate edges for each vertex outside the tree we
keep track of:

Its minimum distance from the tree
The edge that realizes that minimum distance

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 6 / 29

PRIM’S ALGORITHM EXAMPLE

1 2

3 45

6

5

2 6

1

3

4

2 3 6

dist near
1 3 5
2 ∞ 5
3 4 5
4 ∞ 5

�5 – 5
6 2 5 ⇒

1 2

3 45

6

5

2 6

1

3

4

3 62

dist near
1 3 5
2 ∞ 5
3 3 6
4 3 6

�5 – 5

�6 2 5 ⇒
1 2

3 45

6

5

2 6

14

3 62

3
dist near

�1 3 5
2 5 1
3 2 1
4 3 6

�5 – 5

�6 2 5 ⇒

1 2

3 45

6

5

6

14

3 62

3 2 dist near

�1 3 5
2 5 1

�3 2 1
4 1 3

�5 – 5

�6 2 5 ⇒
1 2

3 45

6

5

6

4

3 62

3 2

1

dist near

�1 3 5
2 5 1

�3 2 1

�4 1 3

�5 – 5

�6 2 5 ⇒

1 2

3 45

6

6

4

3 62

3 2

1

5

dist near

�1 3 5

�2 5 1

�3 2 1

�4 1 3

�5 – 5

�6 2 5

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 7 / 29

PRIM’S ALGORITHM (CONT’D)

algorithm PRIM(G = (V ,E ,w), v0 ∈ V):
T ← ∅
c ← 0
for i = 0 to n do

disti ← w(i, v0)
nearesti ← v0

HEAPIFY(dist) (optional)
for i = 1 to n − 1 do

v ← DEQUEUE(dist)
T ← T ∪ {(v , nearestv)}
c ← c + w((v , nearestv))
foreach neighbor x of v outside tree
do

if w(v , x) < distx then
distx ← w(v , x)
nearestx ← v
UPDATE(distx) (optional)

Can organize dist as:
Heap: O(n) to heapify and O(log n)
to update but O(1) to get the
minimum
Plain array: no need to heapify or
update, but O(n) to get the
minimum

Running time (|V | = n, |E | = m):
The foreach loop runs O(m) times
overall (amortized)
Heap:
T (n) = n + n + n log n + m log n =
O(m log n)
Array:
T (n) = n + n × n + m = O(n2)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 8 / 29

KRUSKAL AND PRIM (CONT’D)

Correctness of Prim:
Loop invariant: The partial tree is a minimum-cost spanning tree for the
vertices it contains

Comparison between Prim and Kruskal:

Running time Sparse graphs Dense graphs
(m = o(n2/ log n)) (m = O(n2))

Kruskal O(m log n) O(n log n) O(n2 log n)
Prim Array O(n2) O(n2) O(n2)

Heap O(m log n) O(n log n) O(n2 log n)

No difference between Kruskal and Prim using a heap on sparse graphs
Notable advantage for Prim using an array on dense graphs

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 9 / 29

THERE IS ONLY ONE MINIMUM SPANNING TREE!

Lemma
If all the edge weights in a connected graph G are distinct then G has a
unique minimum-cost spanning tree

Proof by contrapositive:
Let T and T ′ be two minimum-cost spanning trees of G
Let e and e′ be the minimum weight edge in T \ T ′ and T ′ \ T respectively,
w(e) ≤ w(e′)
T ′ ∪ {e} must contain cycle C that goes through e, let e′′ ∈ C \ T
It must be that w(e′′) ≥ w(e′) ≥ w(e) (since e′′ ∈ T ′ \ T)
Let T ′′ = T ′ ∪ {e} \ {e′′} (greedy replace)

T ′′ is a spanning tree (we replaced one edge in a cycle with another in the same
cycle)
w(T ′′) = w(T ′) + w(e)− w(e′′) so w(T ′′) ≤ w(T ′) (since w(e) ≤ w(e′′))
But T ′ is a minimum-cost spanning tree, so it must be that w(T ′′) = w(T ′) and
so w(e) = w(e′′)

This kind of reasoning also works for not necessarily distinct edge
weights as long as we use a consistent way of breaking ties

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 10 / 29

THERE IS ONLY ONE MINIMUM SPANNING TREE!

Lemma
If all the edge weights in a connected graph G are distinct then G has a
unique minimum-cost spanning tree

Proof by contrapositive:
Let T and T ′ be two minimum-cost spanning trees of G
Let e and e′ be the minimum weight edge in T \ T ′ and T ′ \ T respectively,
w(e) ≤ w(e′)
T ′ ∪ {e} must contain cycle C that goes through e, let e′′ ∈ C \ T
It must be that w(e′′) ≥ w(e′) ≥ w(e) (since e′′ ∈ T ′ \ T)
Let T ′′ = T ′ ∪ {e} \ {e′′} (greedy replace)

T ′′ is a spanning tree (we replaced one edge in a cycle with another in the same
cycle)
w(T ′′) = w(T ′) + w(e)− w(e′′) so w(T ′′) ≤ w(T ′) (since w(e) ≤ w(e′′))
But T ′ is a minimum-cost spanning tree, so it must be that w(T ′′) = w(T ′) and
so w(e) = w(e′′)

This kind of reasoning also works for not necessarily distinct edge
weights as long as we use a consistent way of breaking ties

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 10 / 29

THERE IS ONLY ONE ALGORITHM!
Edge classification:

Useless: (u, v) ̸∈ F with u and v in the same connected component of F
Safe: minimum-weigth (u, v) with only u or v in a connected component of F

Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

Lemma
The minimum-cost spanning tree of G contains every safe edge

Greedy-replace proof technique:
Show that the minimum-cost spanning tree of any S ⊆ G contains the safe
edge e for S
Let T be a minimum-cost spanning tree of G not containing e
It must have an edge e′, w(e′) > w(e) that connects S with the rest of G
Then T ′ = T \ {e′} ∪ {e} is a spanning tree with w(T ′) ≤ w(T), a
contradiction

Lemma
The minimum-cost spanning tree contains no useless edge

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 11 / 29

THERE IS ONLY ONE ALGORITHM!
Edge classification:

Useless: (u, v) ̸∈ F with u and v in the same connected component of F
Safe: minimum-weigth (u, v) with only u or v in a connected component of F

Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

Lemma
The minimum-cost spanning tree of G contains every safe edge

Greedy-replace proof technique:
Show that the minimum-cost spanning tree of any S ⊆ G contains the safe
edge e for S
Let T be a minimum-cost spanning tree of G not containing e
It must have an edge e′, w(e′) > w(e) that connects S with the rest of G
Then T ′ = T \ {e′} ∪ {e} is a spanning tree with w(T ′) ≤ w(T), a
contradiction

Lemma
The minimum-cost spanning tree contains no useless edge

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 11 / 29

THERE IS ONLY ONE ALGORITHM!
Edge classification:

Useless: (u, v) ̸∈ F with u and v in the same connected component of F
Safe: minimum-weigth (u, v) with only u or v in a connected component of F

Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

Lemma
The minimum-cost spanning tree of G contains every safe edge

Greedy-replace proof technique:
Show that the minimum-cost spanning tree of any S ⊆ G contains the safe
edge e for S
Let T be a minimum-cost spanning tree of G not containing e
It must have an edge e′, w(e′) > w(e) that connects S with the rest of G
Then T ′ = T \ {e′} ∪ {e} is a spanning tree with w(T ′) ≤ w(T), a
contradiction

Lemma
The minimum-cost spanning tree contains no useless edge

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 11 / 29

SINGLE-SOURCE SHORTEST PATH

We are given a directed, weighted graph G = (V ,E ,w)

Notation: A path p = ⟨v0, v1, . . . , vk ⟩ connects v0 and v1 and we write v0
p
⇝vk

The shortest-path weight from some vertex u to some vertex v is:

δ(u, v) =

{
min{w(p) : u

p
⇝v} if there exists a path from u to v

∞ otherwise

A shortest path from u to v is a path p such that u
p
⇝v and w(p) = δ(u, v)

When we are interested in finding shortest paths in a graph we solve a
shortest-path problem

Single source, single destination (e.g., finding the shortest way to travel from
point A to point B)
Single source, all destinations (e.g., broadcasting a message from one node
in a network to all the other nodes)
All pairs shortest path (e.g., finding the fastest way to send information from
any node in a network to any other node)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 12 / 29

THE SINGLE-SOURCE SHORTEST-PATH PROBLEM

Lemma
One shortest path contains other shortest paths within it. Formally, if
p = ⟨v0, v1, . . . , vi , . . . , vj , . . . , vk ⟩ is a shortest part from v0 to vk then the
sub-path ⟨vi , . . . , vj⟩ of p is a shortest path between vi and vj

The lemma implies that the single source, single destination variant does
not make sense since solving it effectively solves the single source, all
destinations variant:

Input: a weighted graph G and a
source node s:

Output: the shortest paths be-
tween s and any other vertex in G:

y

x

z

10

5

7

2 3

1

2

9

4 6

t

s 0

75

8 9

s

t

y

x

z

10

5

7

2 3

1

2

9

4 6

The lemma also ensures that a greedy approach will work
Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 13 / 29

INITIALIZATION

For each vertex v in the input graph, we keep two values:
dv is a shortest-path estimate, initially∞ for all the vertices but s
πv is the predecessor of v in the shortest path, initially NIL

our shortest path algorithm will set πv for all the vertices in the graph
then, the predecessor link from some vertex v to s runs backwards along a
shortest path from s to v

algorithm INITIALIZESINGLESOURCE(G = (V ,E ,w), s ∈ V ; d , π):
foreach v ∈ V do

dv ←∞
πv ← NIL

ds ← 0

y

x

z

10

5

7

2 3

1

2

9

4 6

t

s ⇒ s

t

y

x

z

10

5

7

2 3

1

2

9

4 6

8
8

8
8

0

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 14 / 29

RELAX!

All algorithms that solve the shortest-path problem are built around the
relaxation technique
Simple idea: if we find something better, we go for it

0

���
���
���
���7

6

9

shortest path to y

[]π z

known shortest path to z

new shortest path to z

shortest path to x

[]π z

s

3

1

x

y

z

algorithm RELAX(y , z,w ∈ V ; d , π):
if dz > dy + w(y , z) then

dz ← dy + w(y , z)
DECREASEKEY(Q, z, dz)
πz ← y

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 15 / 29

DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm solves the single-source shortest-path problem on a
weighted, directed graph G = (V ,E ,w) with positive edge weights

algorithm DIJKSTRA(G = (V ,E ,w), s ∈ V ; π):
INITIALIZESINGLESOURCE(G, s)
S ← ∅
Q ← MAKEQUEUE(V , d)
while ¬ISEMPTY(Q) do

u ← DEQUEUE(Q)
S ← S ∪ {u}
foreach v adjacent to u, v ̸∈ S do

RELAX(u, v ,w)

The algorithm maintains a set S of vertices whose final shortest path from
the source s has been already determined
The algorithm (greedily) keeps selecting the most promising edge u ∈ V \ S,
adds it to S, and relaxes all the edges leaving u

The “most promising” edge is the one with minimum du
Priority queue Q for quick access to this most promising edge

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 16 / 29

DIJKSTRA’S ALGORITHM (CONT’D)

y

x

z

10

5

7

2 3

1

2

9

4 6

t

s

⇓

���
���
���

���
���
���
s

t

y

x

z

10

5

7

2 3

1

2

9

4 60

8
8

8
8

algorithm DIJKSTRA(G = (V ,E ,w), s ∈ V ; π):
INITIALIZESINGLESOURCE(G, s)
S ← ∅
Q ← MAKEQUEUE(V , d)
while ¬ISEMPTY(Q) do

u ← DEQUEUE(Q)
S ← S ∪ {u}
foreach v adjacent to u, v ̸∈ S do

RELAX(u, v ,w)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 17 / 29

DIJKSTRA’S ALGORITHM (CONT’D)

���
���
���

���
���
���
s

t

y

x

z

10

5

7

2 3

1

2

9

4 60

8
8

8
8

⇓

algorithm DIJKSTRA(G = (V ,E ,w), s ∈ V ; π):
INITIALIZESINGLESOURCE(G, s)
S ← ∅
Q ← MAKEQUEUE(V , d)
while ¬ISEMPTY(Q) do

u ← DEQUEUE(Q)
S ← S ∪ {u}
foreach v adjacent to u, v ̸∈ S do

RELAX(u, v ,w)

���
���
���
���

10

5

7

2 3

1

2

9

4 60

8
8

10

5

t

y

x

z

s ⇒

���
���
���
���

s

t

y

x

z

10

5

7

2 3

1

2

4 60

5

9

8

7

14

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 18 / 29

DIJKSTRA’S ALGORITHM (CONT’D)

���
���
���
���

s

t

y

x

z

10

5

7

2 3

1

2

4 60

5

9

8

7

14

0

75

8 9

s

t

y

x

z

10

5

7

2 3

1

2

9

4 6

⇓ while ¬ISEMPTY(Q) do. . . ⇑

���
���
���
���

s

t

y

x

z

10

5

7

2 3

1

2

4 60

5

9

8

7

13

⇒

���
���
���
���

s

t

y

x

z

10

5

7

2 3

1

2

4 60

5

9

8

7

9

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 19 / 29

DIJKSTRA’S ALGORITHM ANALYSIS

Dijkstra’s algorithm relies heavily of operations on the queue Q, namely
ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, t+(n),
t−(n), tx(n), respectively (with n = |V |, m = |E |)
algorithm DIJKSTRA(G = (V ,E ,w), s ∈ V ; π):

INITIALIZESINGLESOURCE(G, s)
S ← ∅
Q ← MAKEQUEUE(V , d)
while ¬ISEMPTY(Q) do

u ← DEQUEUE(Q)
S ← S ∪ {u}
foreach v adjacent to u, v ̸∈ S do

RELAX(u, v ,w)

Total running time: O(n × t+(n) + n × t−(n) + m × tx(n))

Correctness, or we always pick the right vertex: Let ui and ui+1 be the
vertices returned by two successive calls to DEQUEUE; then dui ≤ dui+1

just after the extraction
Either (ui , ui+1) ∈ E and ui+1 is relaxed, so dui+1 = dui + w((ui , ui+1)) ≥ dui

Or ui+1 is not relaxed so it is already in the queue so dui+1 ≥ dui

Trivial generalization for ui and ui+k

No vertex is dequeued more than once
Proof only works for positive edge weights

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 20 / 29

DIJKSTRA’S ALGORITHM ANALYSIS

Dijkstra’s algorithm relies heavily of operations on the queue Q, namely
ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, t+(n),
t−(n), tx(n), respectively (with n = |V |, m = |E |)
algorithm DIJKSTRA(G = (V ,E ,w), s ∈ V ; π):

INITIALIZESINGLESOURCE(G, s)
S ← ∅
Q ← MAKEQUEUE(V , d)
while ¬ISEMPTY(Q) do

u ← DEQUEUE(Q)
S ← S ∪ {u}
foreach v adjacent to u, v ̸∈ S do

RELAX(u, v ,w)

Total running time: O(n × t+(n) + n × t−(n) + m × tx(n))
Correctness, or we always pick the right vertex: Let ui and ui+1 be the
vertices returned by two successive calls to DEQUEUE; then dui ≤ dui+1

just after the extraction
Either (ui , ui+1) ∈ E and ui+1 is relaxed, so dui+1 = dui + w((ui , ui+1)) ≥ dui

Or ui+1 is not relaxed so it is already in the queue so dui+1 ≥ dui

Trivial generalization for ui and ui+k

No vertex is dequeued more than once
Proof only works for positive edge weights

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 20 / 29

ANALYSIS (CONT’D)

The performance of Dijkstra’s algorithm depends heavily of how the
priority queue is implemented (again!)

t+(n) t−(n) tx(n)
Array queue O(1) O(n) O(1)
Heap queue O(log n) O(log n) O(log n)

Running time Sparse graphs Dense graphs
(m = o(n2/ log n)) (m = O(n2))

Array Q O(n2 + m) O(n2) O(n2)
Heap Q O((n + m) log n) O(m log n) O(n2 log n)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 21 / 29

DATA COMPRESSION

Represent data using the minimum amount of bits
Lossy

Compressed data cannot be restored in its original form
Significant compression ratio
Mostly used for multimedia encoding
Examples: JPEG (Joint Photographic Experts Group) and MPEG (Moving
Picture Experts Group)

Lossless
Compressed data can be perfectly reconstructed
Lower compression ratio
Examples: Zip, Gif, Huffman encoding

The Huffman code is an optimal variable-length prefix code
Minimizes the average number of bits/character based on the character
frequencies of occurrence
Code system with the prefix property (prefix code): no code is a prefix of any
other code

Necessary for decoding variable-length codes
Example: A, B, C, D can be encoded respectively as 0, 10, 110, 111, but not as
1, 10, 110, 111 (since the code for A would be a prefix for B, C and D)
Note in passing that fixed length codes (e.g. 00, 01, 10, 11) are all prefix codes

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 22 / 29

THE HUFFMAN CODE

Example: Five characters with their frequency:
A (5%), B (25%), C (20%), D (15%), E (35%)

Traditional (fixed-length encoding):
A=000, B=001, C=010, D=011, E=100 (3 bits/character)

Prefix code tree:
Choose and remove the letter with highest frequency, assign as left child
Repeat for the right child
Label left branches with 0 and right branches with 1
Code for a character is the path from root to letter

algorithm HUFFMANLITE(C):
// C = set of n characters
H ← MAKEQUEUE(C)
T ← new node
for i = 1 to n − 1 do

T .left← DEQUEUE(H)
T .right← new node
T ← T .right

T .right← DEQUEUE(H)
// Set codes in a BFS traversal

AD

C

B

E

0 1

0 1

0 1

0 1

Letter Freq Code Weighted # bits
A 0.05 1111 4× 0.05 = 0.2
B 0.25 10 2× 0.25 = 0.5
C 0.20 110 3× 0.20 = 0.6
D 0.15 1110 4× 0.15 = 0.6
E 0.35 0 1× 0.35 = 0.35

Average bits per letter:
0.2+0.5+0.6+0.6+0.35=2.25
Improvement of 25%

Correctness: letters at different depths = different all-1 prefixes before 0
Running time: Θ(n log n) (both array and heap)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 23 / 29

THE HUFFMAN CODE (CONT’D)
We can do better by assigning frequencies to internal nodes and
choosing the best two frequencies to be the children of a new node:
algorithm HUFFMAN(C):

// C = set of n characters
H ← MAKEQUEUE(C)
for i = 1 to n − 1 do

T ← new node
T .left← DEQUEUE(H)
T .right← DEQUEUE(H)
T .freq← T .left.freq+T .right.freq
INSERT(T freq)

// Set codes in a BFS traversal

A/5 D/15 B/20 C/25 E/35

20

40

60

100

0 1

0

1

0 1

0

1

Running time: Θ(n2) (sorted list) or Θ(n log n) (heap)
Letter Freq Code Weighted # bits
A 0.05 000 3× 0.05 = 0.15
B 0.25 10 2× 0.25 = 0.5
C 0.20 01 2× 0.20 = 0.4
D 0.15 001 3× 0.15 = 0.45
E 0.35 11 2× 0.35 = 0.7

Average bits per letter: 2.2, 27% improvement
Correctness: different paths ensure at least one different bit

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 24 / 29

OPTIMAL TEXT COMPRESSION

Huffman’s algorithm produces an optimal tree
Show that the two least frequent characters have to be siblings in an optimal
tree using a greedy-replace technique
Proceed upward by induction
See textbook

Text compression algorithm:
Calculate the frequency of all letters in the text
Construct the Huffman tree
Encode all the text using the codes obtained from the Huffman tree

Text recovery algorithm:
Traverse the Huffman tree from root to a leaf according to the input bits
Output the leaf label
Repeat traversal for as long as there are bits in the input
Note: this is why we need a code system with the prefix property!

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 25 / 29

THE KNAPSACK PROBLEM

Given w = ⟨w1,w2, . . . ,wn⟩ and p = ⟨p1,p2, . . . ,pn⟩, find
x = ⟨x1, x2, . . . , xn⟩ such that

∑n
i=1 xipi is maximized subject to∑n

i=1 xiwi ≤ C
Given n objects, each with a corresponding weight wi and profit pi and a
knapsack of specific capacity C, choose the objects (or fractions) that you
can fit in the knapsack so that the total profit is maximized

Two versions:
Fractional knapsack: 0 ≤ xi ≤ 1
0/1 knapsack: xi ∈ {0, 1}

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 26 / 29

FRACTIONAL KNAPSACK

Greedy strategies:
1 Take objects one at a time in increasing order of their weights, until the

knapsack is full (a fraction may need to be taken for the last object)
2 Take the objects in decreasing order of their profits
3 Take the objects in decreasing order of their profits per unit weight ratio

Example: w = ⟨ 5, 10, 20 ⟩ C = 30
p = ⟨ 50, 60, 140 ⟩

p/w = ⟨ 10, 6, 7 ⟩
1 x = ⟨1, 1, 15/20⟩, P = 50 + 60 + 140 × 15/20 = 215
2 x = ⟨0, 1, 1⟩, P = 60 + 140 = 200
3 x = ⟨1, 5/10, 1⟩, P = 50 + 60 × 5/10 + 140 = 220

In fact it can be shown that the third strategy will always guarantee an
optimal solution

Suppose that we have an optimal solution that uses some amount of the
lower value density object
Then we substitute that with the same weight of the higher value density
object and we obtain a better solution, a contradiction

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 27 / 29

0/1 KNAPSACK

w = ⟨ 5, 10, 20 ⟩
p = ⟨ 50, 60, 140 ⟩

p/w = ⟨ 10, 6, 7 ⟩
C = 30

By w : x = ⟨1, 1, 0⟩, P = 110
By p: x = ⟨0, 1, 1⟩, P = 200
By p/w : x = ⟨1, 0, 1⟩, P = 190

w = ⟨ 18, 15, 10 ⟩
p = ⟨ 25, 24, 15 ⟩

p/w = ⟨ 1.38, 1.6, 1.5 ⟩
C = 20

By w : x = ⟨0, 0, 1⟩, P = 15
By p: x = ⟨1, 0, 0⟩, P = 25
By p/w : x = ⟨0, 1, 0⟩, P = 24

w = ⟨ 5, 10, 20 ⟩
p = ⟨ 80, 50, 120 ⟩

p/w = ⟨ 16, 5, 6 ⟩
C = 20

By w : x = ⟨1, 1, 0⟩, P = 130
By p: x = ⟨0, 0, 1⟩, P = 120
By p/w : x = ⟨1, 0, 0⟩, P = 50

No greey strategy guarantees an optimal solution for the 0/1 knapsack
problem

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 28 / 29

THE GREEDY-CHOICE PROPERTY

The greedy technique works only for those problems that have the
greedy-choice property: We can assemble a globally optimal solution by
making locally optimal (greedy) choices

Goes hand in hand with the greedy-replace proof technique
Many problems have the greedy-choice property, many more do not
(such as the 0/1 knapsack)
For some problems without the greedy-choice property may obtain a
“good enough” solution for some reasonable definition of “good enough”

Good example: 0/1 knapsack
To be continued

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2024 29 / 29

