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MEMOIZATION AND DYNAMIC PROGRAMMING

Recursive implementations can be expensive:
algorithm RECFIB(n):

if n ≤ 1 then return n
else return RECFIB(n − 1) + RECFIB(n − 2)

O(2n) time
O(1)+recursion space

Memoization: Remember intermediate results
algorithm MEMFIB(n):

if n = 0 ∨ n = 1 then return 1
else

if Fn is undefined then
Fn ← MEMFIB(n − 1) + MEMFIB(n − 2)

return Fn

O(n) time
O(n) (+recursion) space

Dynamic programming: Remember intermediate results explicitly
algorithm DYNFIB(n):

F0 ← 0; F1 ← 1
for i = 1 to n do Fn ← Fn−1 + Fn−2
return Fn

O(n) time
O(n) space

Can also consider remembering intermediate results only as needed
algorithm DYNFIB(n):

prev← 0; curr← 1
for i = 1 to n do

next← prev + curr
prev← curr
curr← next

return curr

O(n) time
O(1) space
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DYNAMIC PROGRAMMING

Dynamic programming = recursion without repetition
1 Formulate the problem recursively

Use a bottom-up approach (starting from the base cases)
2 Build the dynamic programming solution

1 Identify subproblems
2 Choose memoization data structure
3 Identify dependencies and so find evaluation order

Often but not always applicable to optimization problems
But in this case only for problems that satisfy the principle of optimality: An
optimal solution to the problem contains optimal solutions to subproblems
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0/1 KNAPSACK

Given w = ⟨w1, . . . ,wn⟩ and p = ⟨p1, . . . ,pn⟩, find x = ⟨x1, . . . , xn⟩,
xi ∈ {0,1} such that

∑n
i=1 xipi is maximized subject to

∑n
i=1 xiwi ≤ C

Bottom-up recursive solution (O(2n)):
algorithm RECKNAPSACK(i,C, n, p,w): (handle the i-th object)

if i > n then return (0, ⟨⟩)
else

(p−,X−)← RECKNAPSACK(i + 1,C, n, p,w) (do not pick item i)
if wi ≤ C then

(p+,X+)← RECKNAPSACK(i + 1,C − wi , n, p,w) (pick item i)
else

(p+,X+)← (0, ⟨⟩) (we cannot pick item i so we set profit to minimum)
return MAXFST({(p−, ⟨0⟩+ X−), (p+ + wi , ⟨1⟩+ X+)})

Memoization structure must contain information related to the remaining
items and the remaining capacity ⇒ table of item × capacity

Increment of capacity smaller than the smallest wi

Each subproblem (entry in the table) depends on the “upper” and
“upper-left” subproblems
Table filled in top to bottom, left to right
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0/1 KNAPSACK (CONT’D)

Dynamic programming solution:
algorithm KNAPSACK(C, n, p,w):

for i = 1 to n do Pi,0 ← 0
for j = 1 to C do P0,j ← 0
for i = 1 to n do

for j = 1 to C do
if wi > j then Pi,j ← Pi−1,j
else Pi,j ← max{Pi−1,j , pi + Pi−1,j−wi

}

algorithm KNAPSACKTRACE:
j ← C
for i = n downto 1 do

if Pi,j = Pi−1,j then
xi ← 0

else
xi ← 1
j ← j − wi

Running time: Θ(n × C)

→ no better than Θ(2n)!
Many problems are very similar to 0/1 Knapsack

Example (subset sum): Given an array A1...n of positive integers and an
integer T , does any subarray of A sums up to T

Subproblems: SS(i, t) = TRUE iff some subset of A sums to t
Recursive solution:

SS(i, t) =


TRUE if t = 0
FALSE if i > n
SS(i + 1, t) if t < Ai
SS(i + 1, t) ∨ SS(i + 1, t − Ai ) otherwise

Memoization structure: table S1...n,0...T
Evaluation order: rows bottom to top, arbitrary order in a row
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MATRIX CHAIN MULTIPLICATION

Given M = M1 × M2 × . . .× Mn with the dimensions of the matrices
stored in r0...n, such that each Mi has ri−1 rows and ri columns, find how
to bracket the matrix multiplications to minimize the total number of
multiplications

Example: r = ⟨2, 10, 1, 3⟩ that, is A(2 × 10)× B(10 × 1)× C(1 × 3)
A× (B × C) needs 90 integer multiplications
(A× B)× C needs 26 integer multiplications (faster)

Subproblems: mij is the cost of computing Mi × . . .× Mj

Recursive solution:

mij =

{
0 if i = j
mini≤k≤j(mi,k + mk+1,j + ri−1 × rk × rj) if i < j

Memoization structure: table m1...n−1,1...n to store the result of subproblems
Evaluation order: by diagonal top to bottom with arbitrary order within a
diagonal
algorithm MATRIXCHAINMULT: O(n3)

for i = 1 to n do mii ← 0
for r = 1 to n − 1 do

for i = 1 to n − r do
j ← i + r
mi,j ← mini≤k<j (mi,k + mk+1,j + ri−1 × rk × rj )
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OPTIMAL BST
Given n keywords along with their probabilities p1,p2, . . . ,pn, store them
in a binary search tree such that the average search time is minimized

Example: cat (0.1), bag (0.2), apple (0.7)
Sorted: apple (0.7), bag (0.2), cat (0.1)
Five different BST:

cat

bag

apple

cat

bag

apple cat

bag

apple cat

bag

apple

cat

bag

apple

Average search time:
0.1+2×0.2+
3× 0.7 = 2.6

0.1+2×0.7+
3× 0.2 = 2.1

0.2+2×0.7+
3× 0.1 = 1.8

0.7+2×0.1+
3× 0.2 = 1.5

0.7+2×0.2+
3× 0.1 = 1.4

Subproblems: Ai,j is the average search time for a BST with keywords
from i to j
Recursive solution (O(n3) with memoization):

Ai,j =


pi (root i) if i = j
0 (null) if i > j
mini≤k≤j(Ai,k−1 + Ak+1,j +

∑j
m=i pm) (root k ) if i < j

Obvious memoization
Evaluation order: down by diagonal, arbitrary order within diagonal
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ALL-PAIRS SHORTEST PATH

Given a weighted (directed or undirected) graph G = (V ,E) wits |V | = n
and |E | = m, find the shortest path from each vertex to all other vertices
Floyd’s algorithm: Find shortest paths of rank k for increasing k

Uses the adjacency matrix G1...n,1...n of G
Path of rank k : path that only traverses vertices 1 to k (not counting the
source and the destination)
Subproblems: Pk = (Ak

i,j , π
k
i,j)1≤i≤n,1≤j≤n

Ak
i,j is the cost of the minimum path of rank k from i to j

πk
i,j is the predecessor of j in the minimum cost path of rank k from i to j

Recursive solution:

Ak
i,j =

{
Gi,j if k = 0
min{Ak−1

i,j ,Ak−1
i,k + Ak−1

k,j } otherwise

πk
i,j =


i if k = 0
πk−1

i,j if Ak−1
i,j ≤ Ak−1

i,k + Ak−1
k,j

k if Ak−1
i,j > Ak−1

i,k + Ak−1
k,j
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FLOYD’S ALGORITHM (CONT’D)

Memoization: arrays Ak and πk for cost and predecessor
Evaluation order: increasing k , arbitrary for i and j
for i = 1 to n do

for j = 1 to n do
A0

i,j ← Gij

πi,j ← i

for k = 1 to n do O(n3)
for i = 1 to n do

for j = 1 to n do
if Ak−1

i,j ≤ Ak−1
i,k + Ak−1

k,j then
Ak

i,j ← Ak−1
i,j

else
Ak

i,j ← Ak−1
i,k + Ak−1

k,j
πi,j ← k

Optimization: A single predecessor array π

When computing πk
i,j we only need πk−1

i,j and then we can overwrite it

Further optimization: At any step we only need Ak−1 and Ak , so we only
need two matrices for the cost (current and previous)
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THE TRAVELLING SALESMAN PROBLEM

Given a weighted directed graph G = ({1,2, . . . ,n},E) find the
Hamiltonian Cycle of minimum cost

Naı̈ve solution: try all the permutations, retain the one with minimal cost
(O(n2n) time)

Crux:
Start the cycle at vertex 1
Let the next vertex be k
The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for the graph induced by V \ {1}

Recursive solution:
Let g(i ,S) be the length of the shortest path starting at i and going through
all the vertices in S back to 1

g(i ,S) =

{
min(i,j)∈E(w(i , j)) if S = ∅
minj∈S(w((i , j)) + g(j ,S \ {j})) otherwise

Memoization: Table (gi,j)i∈{1,...,n},j∈2{1,...,n}

Order of evaluation: increasing second dimension, do not care for the first
Running time: O(n2n)

Unknown (million dollar question, literally ) whether we can do better than
the naı̈ve solution for the travelling salesman and the 0/1 knapsack (and
many more problems)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9 / 9



THE TRAVELLING SALESMAN PROBLEM

Given a weighted directed graph G = ({1,2, . . . ,n},E) find the
Hamiltonian Cycle of minimum cost

Naı̈ve solution: try all the permutations, retain the one with minimal cost
(O(n2n) time)

Crux:
Start the cycle at vertex 1
Let the next vertex be k
The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for the graph induced by V \ {1}

Recursive solution:
Let g(i ,S) be the length of the shortest path starting at i and going through
all the vertices in S back to 1

g(i ,S) =

{
min(i,j)∈E(w(i , j)) if S = ∅
minj∈S(w((i , j)) + g(j ,S \ {j})) otherwise

Memoization: Table (gi,j)i∈{1,...,n},j∈2{1,...,n}

Order of evaluation: increasing second dimension, do not care for the first
Running time: O(n2n)

Unknown (million dollar question, literally ) whether we can do better than
the naı̈ve solution for the travelling salesman and the 0/1 knapsack (and
many more problems)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9 / 9



THE TRAVELLING SALESMAN PROBLEM

Given a weighted directed graph G = ({1,2, . . . ,n},E) find the
Hamiltonian Cycle of minimum cost

Naı̈ve solution: try all the permutations, retain the one with minimal cost
(O(n2n) time)

Crux:
Start the cycle at vertex 1
Let the next vertex be k
The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for the graph induced by V \ {1}

Recursive solution:
Let g(i ,S) be the length of the shortest path starting at i and going through
all the vertices in S back to 1

g(i ,S) =

{
min(i,j)∈E(w(i , j)) if S = ∅
minj∈S(w((i , j)) + g(j ,S \ {j})) otherwise

Memoization: Table (gi,j)i∈{1,...,n},j∈2{1,...,n}

Order of evaluation: increasing second dimension, do not care for the first
Running time: O(n2n)

Unknown (million dollar question, literally ) whether we can do better than
the naı̈ve solution for the travelling salesman and the 0/1 knapsack (and
many more problems)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9 / 9


