Dynamic Programming

Stefan D. Bruda

CS 317, Fall 2024

• Recursive implementations can be expensive:

algorithm RECFIB(n): if $n \le 1$ then return nelse return RECFIB(n - 1) + RECFIB(n - 2)

 $O(2^n)$ time O(1)+recursion space

MEMOIZATION AND DYNAMIC PROGRAMMING

MEMOIZATION AND DYNAMIC PROGRAMMING

Dynamic programming: Remember intermediate results explicitly

algorithm DYNFIB(*n*): $\begin{bmatrix}
F_0 \leftarrow 0; F_1 \leftarrow 1 \\
\text{for } i = 1 \text{ to } n \text{ do } F_n \leftarrow F_{n-1} + F_{n-2} \\
\text{return } F_n
\end{bmatrix}$

O(n) time O(n) space

MEMOIZATION AND DYNAMIC PROGRAMMING

• Dynamic programming = recursion without repetition

- Formulate the problem recursively
 - Use a bottom-up approach (starting from the base cases)
- Build the dynamic programming solution
 - Identify subproblems
 - 2 Choose memoization data structure
 - Identify dependencies and so find evaluation order

Often but not always applicable to optimization problems

• But in this case only for problems that satisfy the principle of optimality: An optimal solution to the problem contains optimal solutions to subproblems

0/1 KNAPSACK

- Given $w = \langle w_1, \dots, w_n \rangle$ and $p = \langle p_1, \dots, p_n \rangle$, find $x = \langle x_1, \dots, x_n \rangle$, $x_i \in \{0, 1\}$ such that $\sum_{i=1}^n x_i p_i$ is maximized subject to $\sum_{i=1}^n x_i w_i \leq C$
- Bottom-up recursive solution $(O(2^n))$: algorithm RECKNAPSACK(i, C, n, p, w): (handle the *i*-th object) if i > n then return $(0, \langle \rangle)$ else $\begin{pmatrix} (p_-, X_-) \leftarrow \text{RECKNAPSACK}(i + 1, C, n, p, w) & (do not pick item i) \\ \text{if } w_i \leq C \text{ then} \\ | (p_+, X_+) \leftarrow \text{RECKNAPSACK}(i + 1, C - w_i, n, p, w) & (pick item i) \\ \text{else} \\ | (p_+, X_+) \leftarrow (0, \langle \rangle) & (we cannot pick item i so we set profit to minimum) \\ \text{return MaxFst}(\{(p_-, \langle 0 \rangle + X_-), (p_+ + w_i, \langle 1 \rangle + X_+)\})$

0/1 KNAPSACK

- Given $w = \langle w_1, \dots, w_n \rangle$ and $p = \langle p_1, \dots, p_n \rangle$, find $x = \langle x_1, \dots, x_n \rangle$, $x_i \in \{0, 1\}$ such that $\sum_{i=1}^n x_i p_i$ is maximized subject to $\sum_{i=1}^n x_i w_i \leq C$
- Bottom-up recursive solution $(O(2^n))$: algorithm RECKNAPSACK(i, C, n, p, w): (handle the *i*-th object) if i > n then return $(0, \langle \rangle)$ else $(p_-, X_-) \leftarrow \text{RECKNAPSACK}(i + 1, C, n, p, w)$ (do not pick item *i*) if $w_i \le C$ then $| (p_+, X_+) \leftarrow \text{RECKNAPSACK}(i + 1, C - w_i, n, p, w)$ (pick item *i*) else $| (p_+, X_+) \leftarrow (0, \langle \rangle)$ (we cannot pick item *i* so we set profit to minimum) return MAXFST{{(p_-, \langle 0 \rangle + X_-), (p_+ + w_i, \langle 1 \rangle + X_+)}}
- Memoization structure must contain information related to the remaining items and the remaining capacity ⇒ table of item × capacity
 - Increment of capacity smaller than the smallest w_i
- Each subproblem (entry in the table) depends on the "upper" and "upper-left" subproblems
- Table filled in top to bottom, left to right

0/1 KNAPSACK (CONT'D)

• Dynamic programming solution: algorithm KNAPSACK(C, n, p, w): for i = 1 to n do $P_{i,0} \leftarrow 0$ for j = 1 to C do $P_{0,j} \leftarrow 0$ for i = 1 to n do for j = 1 to C do if $w_i > j$ then $P_{i,j} \leftarrow P_{i-1,j}$ else $P_{i,j} \leftarrow \max\{P_{i-1,j}, p_i + P_{i-1,j-w_i}\}$

algorithm KNAPSACKTRACE:

$$j \leftarrow C$$

for $i = n$ downto 1 do
if $P_{i,j} = P_{i-1,j}$ then
 $X_i \leftarrow 0$
else
 $x_i \leftarrow 1$
 $j \leftarrow j - w_i$

• Running time: $\Theta(n \times C)$

0/1 KNAPSACK (CONT'D)

• Dynamic programming solution: algorithm KNAPSACK(C, n, p, w): for i = 1 to n do $P_{i,0} \leftarrow 0$ for j = 1 to C do $P_{0,j} \leftarrow 0$ for i = 1 to n do for j = 1 to C do if $w_i > j$ then $P_{i,j} \leftarrow P_{i-1,j}$ else $P_{i,j} \leftarrow \max\{P_{i-1,j}, p_i + P_{i-1,j-w_i}\}$

```
algorithm KNAPSACKTRACE:

j \leftarrow C

for i = n downto 1 do

if P_{i,j} = P_{i-1,j} then

X_i \leftarrow 0

else

x_i \leftarrow 1

j \leftarrow j - w_i
```

• Running time: $\Theta(n \times C) \rightarrow$ no better than $\Theta(2^n)$!

0/1 KNAPSACK (CONT'D)

• Dynamic programming solution: algorithm KNAPSACK(C, n, p, w): for i = 1 to n do $P_{i,0} \leftarrow 0$

for
$$j = 1$$
 to C do $P_{0,j} \leftarrow 0$
for $i = 1$ to n do
for $j = 1$ to C do
if $w_i > j$ then $P_{i,j} \leftarrow P_{i-1,j}$
else $P_{i,j} \leftarrow \max\{P_{i-1,j}, p_i + P_{i-1,j-w_i}\}$

algorithm KNAPSACKTRACE:

$$j \leftarrow C$$

for $i = n$ downto 1 do
if $P_{i,j} = P_{i-1,j}$ then
 $x_i \leftarrow 0$
else
 $x_i \leftarrow 1$
 $j \leftarrow j - w_i$

- Running time: $\Theta(n \times C) \rightarrow$ no better than $\Theta(2^n)$!
- Many problems are very similar to 0/1 Knapsack
 - Example (subset sum): Given an array $A_{1...n}$ of positive integers and an integer *T*, does any subarray of *A* sums up to *T*
 - Subproblems: SS(i, t) = TRUE iff some subset of A sums to t
 - Recursive solution:

$$SS(i, t) = \begin{cases} \mathsf{TRUE} & \text{if } t = 0\\ \mathsf{FALSE} & \text{if } i > n\\ SS(i+1, t) & \text{if } t < A_i\\ SS(i+1, t) \lor SS(i+1, t-A_i) & \text{otherwise} \end{cases}$$

- Memoization structure: table S_{1...n,0...T}
- Evaluation order: rows bottom to top, arbitrary order in a row

MATRIX CHAIN MULTIPLICATION

- Given $M = M_1 \times M_2 \times \ldots \times M_n$ with the dimensions of the matrices stored in $r_{0...n}$, such that each M_i has r_{i-1} rows and r_i columns, find how to bracket the matrix multiplications to minimize the total number of multiplications
 - Example: $r = \langle 2, 10, 1, 3 \rangle$ that, is $A(2 \times 10) \times B(10 \times 1) \times C(1 \times 3)$
 - A × (B × C) needs 90 integer multiplications
 - $(A \times B) \times C$ needs 26 integer multiplications (faster)

MATRIX CHAIN MULTIPLICATION

- Given $M = M_1 \times M_2 \times \ldots \times M_n$ with the dimensions of the matrices stored in $r_{0...n}$, such that each M_i has r_{i-1} rows and r_i columns, find how to bracket the matrix multiplications to minimize the total number of multiplications
 - Example: $r = \langle 2, 10, 1, 3 \rangle$ that, is $A(2 \times 10) \times B(10 \times 1) \times C(1 \times 3)$
 - A × (B × C) needs 90 integer multiplications
 - $(A \times B) \times C$ needs 26 integer multiplications (faster)
 - Subproblems: m_{ij} is the cost of computing $M_i \times \ldots \times M_j$

MATRIX CHAIN MULTIPLICATION

- Given $M = M_1 \times M_2 \times \ldots \times M_n$ with the dimensions of the matrices stored in $r_{0...n}$, such that each M_i has r_{i-1} rows and r_i columns, find how to bracket the matrix multiplications to minimize the total number of multiplications
 - Example: $r = \langle 2, 10, 1, 3 \rangle$ that, is $A(2 \times 10) \times B(10 \times 1) \times C(1 \times 3)$
 - $A \times (B \times C)$ needs 90 integer multiplications
 - $(A \times B) \times C$ needs 26 integer multiplications (faster)
 - Subproblems: m_{ij} is the cost of computing $M_i \times \ldots \times M_j$
 - Recursive solution:

$$m_{ij} = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k \le j} (m_{i,k} + m_{k+1,j} + r_{i-1} \times r_k \times r_j) & \text{if } i < j \end{cases}$$

- Memoization structure: table $m_{1...n-1,1...n}$ to store the result of subproblems
- Evaluation order: by diagonal top to bottom with arbitrary order within a diagonal

```
algorithm MATRIXCHAINMULT: O(n^3)
for i = 1 to n do m_{ii} \leftarrow 0
for r = 1 to n - 1 do
for i = 1 to n - r do
j \leftarrow i + r
m_{i,j} \leftarrow \min_{i \le k < j} (m_{i,k} + m_{k+1,j} + r_{i-1} \times r_k \times r_j)
```

OPTIMAL BST

- Given *n* keywords along with their probabilities $p_1, p_2, ..., p_n$, store them in a binary search tree such that the average search time is minimized
 - Example: cat (0.1), bag (0.2), apple (0.7)
 - Sorted: apple (0.7), bag (0.2), cat (0.1)
 - Five different BST:

Average search time:

$0.1 + 2 \times 0.2 +$	$0.1 + 2 \times 0.7 +$	$0.2 + 2 \times 0.7 +$	$0.7 + 2 \times 0.1 +$	$0.7 + 2 \times 0.2 +$
$3 \times 0.7 = 2.6$	$3 \times 0.2 = 2.1$	$3 \times 0.1 = 1.8$	$3 \times 0.2 = 1.5$	$3 \times 0.1 = 1.4$

OPTIMAL BST

- Given *n* keywords along with their probabilities *p*₁, *p*₂,..., *p_n*, store them in a binary search tree such that the average search time is minimized
 - Example: cat (0.1), bag (0.2), apple (0.7)
 - Sorted: apple (0.7), bag (0.2), cat (0.1)
 - Five different BST:

Average search time:

• Subproblems: *A_{i,j}* is the average search time for a BST with keywords from *i* to *j*

OPTIMAL BST

- Given *n* keywords along with their probabilities $p_1, p_2, ..., p_n$, store them in a binary search tree such that the average search time is minimized
 - Example: cat (0.1), bag (0.2), apple (0.7)
 - Sorted: apple (0.7), bag (0.2), cat (0.1)
 - Five different BST:

Average search time:

- Subproblems: *A_{i,j}* is the average search time for a BST with keywords from *i* to *j*
- Recursive solution (*O*(*n*³) with memoization):

$$A_{i,j} = \begin{cases} p_i \text{ (root } i) & \text{if } i = j \\ 0 \text{ (null)} & \text{if } i > j \end{cases}$$

$$(\min_{i \le k \le j} (A_{i,k-1} + A_{k+1,j} + \sum_{m=i}^{j} p_m) \pmod{k}$$
 if $i < j$

- Obvious memoization
- Evaluation order: down by diagonal, arbitrary order within diagonal

- Given a weighted (directed or undirected) graph G = (V, E) wits |V| = n and |E| = m, find the shortest path from each vertex to all other vertices
- Floyd's algorithm: Find shortest paths of rank k for increasing k
 - Uses the adjacency matrix $G_{1...n,1...n}$ of G
 - Path of rank k: path that only traverses vertices 1 to k (not counting the source and the destination)
 - Subproblems: $P_k = (A_{i,j}^k, \pi_{i,j}^k)_{1 \le i \le n, 1 \le j \le n}$
 - $A_{i,i}^k$ is the cost of the minimum path of rank k from i to j
 - $\pi_{i,i}^{k}$ is the predecessor of j in the minimum cost path of rank k from i to j

- Given a weighted (directed or undirected) graph G = (V, E) wits |V| = n and |E| = m, find the shortest path from each vertex to all other vertices
- Floyd's algorithm: Find shortest paths of rank k for increasing k
 - Uses the adjacency matrix G_{1...n,1...n} of G
 - Path of rank k: path that only traverses vertices 1 to k (not counting the source and the destination)
 - Subproblems: $P_k = (A_{i,j}^k, \pi_{i,j}^k)_{1 \le i \le n, 1 \le j \le n}$
 - $A_{i,i}^k$ is the cost of the minimum path of rank k from i to j
 - $\pi_{i,i}^{\vec{k}}$ is the predecessor of *j* in the minimum cost path of rank *k* from *i* to *j*
 - Recursive solution:

$$\begin{aligned} \mathbf{A}_{i,j}^{k} &= \begin{cases} G_{i,j} & \text{if } k = 0\\ \min\{A_{i,j}^{k-1}, A_{i,k}^{k-1} + A_{k,j}^{k-1}\} & \text{otherwise} \end{cases} \\ \pi_{i,j}^{k} &= \begin{cases} i & \text{if } k = 0\\ \pi_{i,j}^{k-1} & \text{if } A_{i,j}^{k-1} \le A_{i,k}^{k-1} + A_{k,j}^{k-1}\\ k & \text{if } A_{i,j}^{k-1} > A_{i,k}^{k-1} + A_{k,j}^{k-1} \end{cases} \end{aligned}$$

FLOYD'S ALGORITHM (CONT'D)

- Memoization: arrays A^k and π^k for cost and predecessor
- Evaluation order: increasing k, arbitrary for i and j

```
for i = 1 to n do

for j = 1 to n do

\begin{bmatrix} A_{i,j}^{0} \leftarrow G_{ij} \\ \pi_{i,j} \leftarrow i \end{bmatrix}
for k = 1 to n do

for j = 1 to n do

for j = 1 to n do

\begin{bmatrix} \text{for } j = 1 \text{ to } n \text{ do} \\ \text{for } j = 1 \text{ to } n \text{ do} \end{bmatrix}
\begin{bmatrix} A_{i,j}^{k-1} \leq A_{i,k}^{k-1} + A_{k,j}^{k-1} \text{ then} \\ A_{i,j}^{k} \leftarrow A_{i,j}^{k-1} \end{bmatrix}
else

\begin{bmatrix} A_{i,j}^{k} \leftarrow A_{i,j}^{k-1} + A_{k,j}^{k-1} \\ \text{else} \\ \pi_{i,j} \leftarrow k \end{bmatrix}
```

- Optimization: A single predecessor array π
 - When computing $\pi_{i,j}^k$ we only need $\pi_{i,j}^{k-1}$ and then we can overwrite it

FLOYD'S ALGORITHM (CONT'D)

- Memoization: arrays A^k and π^k for cost and predecessor
- Evaluation order: increasing k, arbitrary for i and j

```
for i = 1 to n do
            for j = 1 to n do
                \begin{vmatrix} A_{i,j}^0 \leftarrow G_{ij} \\ \pi_{i,j} \leftarrow i \end{vmatrix}
for k = 1 to n do
                                                            O(n^3)
            for i = 1 to n do
                         for i = 1 to n do
                           \begin{vmatrix} \mathbf{i} \mathbf{f} A_{i,j}^{k-1} \leq A_{i,k}^{k-1} + A_{k,j}^{k-1} \text{ then} \\ | A_{i,j}^k \leftarrow A_{i,j}^{k-1} \\ else \\ | A_{i,j}^k \leftarrow A_{i,k}^{k-1} + A_{k,j}^{k-1} \\ \pi_{i,j} \leftarrow k \end{vmatrix}
```

- Optimization: A single predecessor array $\boldsymbol{\pi}$
 - When computing $\pi_{i,j}^k$ we only need $\pi_{i,j}^{k-1}$ and then we can overwrite it
- Further optimization: At any step we only need A^{k-1} and A^k , so we only need two matrices for the cost (current and previous)

THE TRAVELLING SALESMAN PROBLEM

- Given a weighted directed graph G = ({1, 2, ..., n}, E) find the Hamiltonian Cycle of minimum cost
 - Naïve solution: try all the permutations, retain the one with minimal cost (O(n2ⁿ) time)

THE TRAVELLING SALESMAN PROBLEM

- Given a weighted directed graph *G* = ({1, 2, ..., *n*}, *E*) find the Hamiltonian Cycle of minimum cost
 - Naïve solution: try all the permutations, retain the one with minimal cost (O(n2ⁿ) time)

Orux:

- Start the cycle at vertex 1
- Let the next vertex be k
- The path from *k* to 1 must be an optimal (minimum cost) Hamiltonian path for the graph induced by $V \setminus \{1\}$

Recursive solution:

• Let g(i, S) be the length of the shortest path starting at *i* and going through all the vertices in *S* back to 1

$$g(i, S) = \begin{cases} \min_{(i,j) \in E} (w(i,j)) & \text{if } S = \emptyset \\ \min_{j \in S} (w((i,j)) + g(j, S \setminus \{j\})) & \text{otherwise} \end{cases}$$

- Memoization: Table $(g_{i,j})_{i \in \{1,...,n\}, j \in 2^{\{1,...,n\}}}$
- Order of evaluation: increasing second dimension, do not care for the first
- Running time: O(n2ⁿ)

THE TRAVELLING SALESMAN PROBLEM

- Given a weighted directed graph *G* = ({1, 2, ..., *n*}, *E*) find the Hamiltonian Cycle of minimum cost
 - Naïve solution: try all the permutations, retain the one with minimal cost (O(n2ⁿ) time)

Orux:

- Start the cycle at vertex 1
- Let the next vertex be k
- The path from *k* to 1 must be an optimal (minimum cost) Hamiltonian path for the graph induced by $V \setminus \{1\}$

Recursive solution:

• Let g(i, S) be the length of the shortest path starting at *i* and going through all the vertices in *S* back to 1

$$g(i, S) = \left\{ egin{array}{ll} \min_{(i,j)\in \mathcal{E}}(w(i,j)) & ext{if } S = \emptyset \ \min_{j\in S}(w((i,j)) + g(j, S\setminus\{j\})) & ext{otherwise} \end{array}
ight.$$

- Memoization: Table $(g_{i,j})_{i \in \{1,...,n\}, j \in 2^{\{1,...,n\}}}$
- Order of evaluation: increasing second dimension, do not care for the first
- Running time: O(n2ⁿ)
- Unknown (million dollar question, literally) whether we can do better than the naïve solution for the travelling salesman and the 0/1 knapsack (and many more problems)