Dynamic Programming

Stefan D. Bruda

CS 317, Fall 2024

MEMOIZATION AND DYNAMIC PROGRAMMING

@ Recursive implementations can be expensive:

algorithm RECFIB(n): ny i
if n <1 then return n 0(2) time .
else return RECFIB(n — 1) + RECFIB(n — 2) O(1)+recursion space

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 1/9

MEMOIZATION AND DYNAMIC PROGRAMMING

@ Recursive implementations can be expensive:

algorithm RECFIB(n): ny i
if n <1 then return n 0(2) time .
| else return RECFIB(n — 1) + RECFIB(n — 2) O(1)+recursion space

@ Memoization: Remember intermediate results
algorithm MEMFIB(n):
if n=0Vv n=1then return 1

1%t £ is undefined then O(m) time
n 1S unaeftine: .
L | Fn < MEMFIB(n — 1) + MEMFIB(n — 2) O(n) (+recursion) space
return Fp

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 1/9

MEMOIZATION AND DYNAMIC PROGRAMMING

@ Recursive implementations can be expensive:

algorithm RECFIB(n): ny i
if n <1 then return n 0(2) time .
| else return RECFIB(n — 1) + RECFIB(n — 2) O(1)+recursion space

@ Memoization: Remember intermediate results
algorithm MEMFIB(n):
if n=0Vv n=1then return 1

1%t £ is undefined then O(m) time
n 1S unaeftine: .
L | Fn < MEMFIB(n — 1) + MEMFIB(n — 2) O(n) (+recursion) space
return Fp

@ Dynamic programming: Remember intermediate results explicitly
algorithm DYNFIB(n):

Fo < 0; Fy « 1 O(n) time
for i=1tondo Fr+ Fry1+ Frp O(n) space
L return Fp

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 1/9

MEMOIZATION AND DYNAMIC PROGRAMMING

@ Recursive implementations can be expensive:

algorithm RECFIB(n): ny i
if n <1 then return n 0(2) time .
| else return RECFIB(n — 1) + RECFIB(n — 2) O(1)+recursion space

@ Memoization: Remember intermediate results
algorithm MEMFIB(n):
if n=0Vv n=1then return 1

elseif Fni defined then O(n) time
n 1S unaeftine: .
L | Fn < MEMFIB(n — 1) + MEMFIB(n — 2) O(n) (+recursion) space
return Fp

@ Dynamic programming: Remember intermediate results explicitly
algorithm DYNFIB(n):

Fo < 0; Fy « 1 O(n) time
for i=1tondo Fr+ Fry1+ Frp O(n) space
L return Fp

@ Can also consider remembering intermediate results only as needed

algorithm DYNFIB(n):
prev < 0; curr < 1

for i=1tondo O(n) time
next <— prev + curr
L prev « curr O(1) space
curr <— next

return curr

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 1/9

DYNAMIC PROGRAMMING

@ Dynamic programming = recursion without repetition
@ Formulate the problem recursively
@ Use a bottom-up approach (starting from the base cases)
@ Build the dynamic programming solution

@ Identify subproblems
@ Choose memoization data structure
@ Identify dependencies and so find evaluation order

@ Often but not always applicable to optimization problems

e But in this case only for problems that satisfy the principle of optimality: An
optimal solution to the problem contains optimal solutions to subproblems

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 2/9

0/1 KNAPSACK

@ Givenw = (wyq,...,wy)and p= (p1,...,Pn), find x = (X1,..., Xn),
x; € {0,1} such that "7, x;p; is maximized subject to 37, x;w; < C
@ Bottom-up recursive solution (O(27)):

algorithm RECKNAPSACK(i, C, n, p, w): (handle the i-th object)
if i > nthen return (0, ())
else
(b—, X_) + RECKNAPSACK(i+1,C,n,p,w) (do not pick item /)
if w; < Cthen

h (p+, X4) + RECKNAPSACK(i+1,C — w;, n,p,w) (pick item /)
else

L (P, Xy) < (0,{)) (we cannot pick item i so we set profit to minimum)
return MAXFST({(p_, (0) + X_), (1 + wi, (1) + X4)})

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 3/9

0/1 KNAPSACK

@ Givenw = (wyq,...,wy)and p= (p1,...,Pn), find x = (X1,..., Xn),
x; € {0,1} such that "7, x;p; is maximized subject to 37, x;w; < C
@ Bottom-up recursive solution (O(27)):

algorithm RECKNAPSACK(i, C, n, p, w): (handle the i-th object)
if i > nthen return (0, ())
else
(b—, X_) + RECKNAPSACK(i+1,C,n,p,w) (do not pick item /)
if w; < Cthen

h (p+, X4) + RECKNAPSACK(i+1,C — w;, n,p,w) (pick item /)
else
L (P, Xy) < (0,{)) (we cannot pick item i so we set profit to minimum)

return MAXFST({(p—., (0) + X_), (p+ + Wi, (1) + X.)})

° Memoization structure must contain information related to the remaining
items and the remaining capacity = table of item x capacity

o Increment of capacity smaller than the smallest w;

@ Each subproblem (entry in the table) depends on the “upper” and
“upper-left” subproblems

@ Table filled in top to bottom, left to right

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 3/9

0/1 KNAPSACK (CONT'D)

@ Dynamic programming solution:

algorithm KNAPSACK(C, n, p, w): algorithm KNAPSACKTRAGE:
fori=1tondo Py < 0 j«C
forj=1to Cdo P+ 0 for i = ndownto 1 do
fori=1tondo it Pij=Pi_q,then
forj = 1to C do | X< 0
if Wi >jthen Pi,j — P"*L]‘ eIseX. 1
L else P,',j <~ max{P[,1,/,p; + Pf*h/*Wi} j’(_l-_ w;

@ Running time: ©(n x C)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 4/9

0/1 KNAPSACK (CONT'D)

@ Dynamic programming solution:

algorithm KNAPSACK(C, n, p, w): algorithm KNAPSACKTRAGE:
fori=1tondo Py < 0 j«C
forj=1to Cdo P+ 0 for i = ndownto 1 do
fori=1tondo it Pij=Pi_q,then
forj = 1to C do | X< 0
if Wi >jthen Pi,j — P"*L]‘ eIseX. 1
L else P,',j <~ max{P[,1,/,p; + Pf*h/*Wi} j’(_l-_ w;

@ Running time: ©(n x C) — no better than ©(2")!

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 4/9

0/1 KNAPSACK (CONT'D)

@ Dynamic programming solution:

algorithm KNAPSACK(C, n, p, w): algorithm KNAPSACKTRACE:
fori=1tondo Py < 0 j<C
forj=1to Cdo P+ 0 for i = ndownto 1 do
fori=1tondo it Pij=Pi_q,then
forj = 1to C do | X< 0
if Wi >jthen Pi,j — P"*L]‘ elseX. 1
L else P,',j — max{P[,1,/,p/ + P/*LI'*W,'} /.’<_/._ w;

@ Running time: ©(n x C) — no better than ©(2")!

@ Many problems are very similar to 0/1 Knapsack
o Example (subset sum): Given an array As..., of positive integers and an
integer T, does any subarray of Asumsupto T
@ Subproblems: SS(i, t) = TRUE iff some subset of Asums to t
@ Recursive solution:

TRUE ift=20
.) FALSE ifi >n
SSU: D=1 ss(i+1,1) it t < A

SS(i+1,t)v SS(i+1,t— A;) otherwise

@ Memoization structure: table Sy 0.7
@ Evaluation order: rows bottom to top, arbitrary order in a row

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 4/9

MATRIX CHAIN MULTIPLICATION

@ Given M = M; x Mb x ... x M, with the dimensions of the matrices
stored in ry_._pn, such that each M; has r;_4 rows and r; columns, find how
to bracket the matrix multiplications to minimize the total number of
multiplications

e Example: r = (2,10,1,3) that, is A(2 x 10) x B(10 x 1) x C(1 x 3)
@ A x (B x C) needs 90 integer multiplications
@ (A x B) x C needs 26 integer multiplications (faster)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 5/9

MATRIX CHAIN MULTIPLICATION

@ Given M = M; x Mb x ... x M, with the dimensions of the matrices
stored in ry_._pn, such that each M; has r;_4 rows and r; columns, find how
to bracket the matrix multiplications to minimize the total number of
multiplications

e Example: r = (2,10,1,3) that, is A(2 x 10) x B(10 x 1) x C(1 x 3)
@ A x (B x C) needs 90 integer multiplications
@ (A x B) x C needs 26 integer multiplications (faster)

@ Subproblems: mj is the cost of computing M; x ... x M;

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 5/9

MATRIX CHAIN MULTIPLICATION

@ Given M = M; x Mb x ... x M, with the dimensions of the matrices
stored in ry_._pn, such that each M; has r;_4 rows and r; columns, find how
to bracket the matrix multiplications to minimize the total number of
multiplications

e Example: r = (2,10,1,3) that, is A(2 x 10) x B(10 x 1) x C(1 x 3)
@ A x (B x C) needs 90 integer multiplications
@ (A x B) x C needs 26 integer multiplications (faster)
Subproblems: m; is the cost of computing M; x ... x M;
Recursive solution:

me— 0 ifi=j
L min,'gkgj(m,‘,k + Mygqj+ liog X Ix X I’,) if i <j

Memoization structure: table my__,_+.1...n to store the result of subproblems
Evaluation order: by diagonal top to bottom with arbitrary order within a
diagonal
algorithm MATRIXCHAINMULT: o(n®)

fori=1tondo m; + 0

forr=1ton—1do
L fori=1ton—rdo

ji+r
m; j = minj<<j(Mik 4 Mipq j+ Fiog X I X 17)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 5/9

OPTIMAL BST

@ Given n keywords along with their probabilities p1, p2, . . . , pn, store them
in a binary search tree such that the average search time is minimized
o Example: cat (0.1), bag (0.2), apple (0.7)
e Sorted: apple (0.7), bag (0.2), cat (0.1)
o Five dlfferent BST:

apple apple
@ (ome)
apple

Average search tlme.

0.14+2x0.24+ 0.14+2x0.74+ 0.2+2x0.7+ 0.742x0.14+ 0.74-2x0.24
3x07=26 3x02=21 3x01=18 3x02=15 3x01=14

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 6/9

OPTIMAL BST

@ Given n keywords along with their probabilities p1, p2, . . . , pn, store them
in a binary search tree such that the average search time is minimized
o Example: cat (0.1), bag (0.2), apple (0.7)
e Sorted: apple (0.7), bag (0.2), cat (0.1)
o Five dlfferent BST:

apple apple
@ (anoe)
apple

Average search tlme.

0.14+2x0.24+ 0.14+2x0.74+ 0.2+2x0.7+ 0.742x0.14+ 0.74-2x0.24
3x07=26 3x02=21 3x01=18 3x02=15 3x01=14

@ Subproblems: A; ; is the average search time for a BST with keywords
from i to j

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 6/9

OPTIMAL BST

@ Given n keywords along with their probabilities p1, p2, . . . , pn, store them
in a binary search tree such that the average search time is minimized
o Example: cat (0.1), bag (0.2), apple (0.7)
e Sorted: apple (0.7), bag (0.2), cat (0.1)
o Five dlfferent BST:

apple apple
@ (ome)
apple

Average search tlme.

0.14+2x0.24+ 0.14+2x0.74+ 0.2+2x0.7+ 0.742x0.14+ 0.74-2x0.24
3x07=26 3x02=21 3x01=18 3x02=15 3x01=14

@ Subproblems: A; ; is the average search time for a BST with keywords
from i to j
@ Recursive solution (O(n®) with memoization):

p; (root /) ifi=j
Aij =< 0(null) ' ifi>j
mini<k<j(Aik—1 + Akp1j+ d>om_; Pm) (root k) if i <j

@ Obvious memoization
@ Evaluation order: down by diagonal, arbitrary order within diagonal

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 6/9

ALL-PAIRS SHORTEST PATH

@ Given a weighted (directed or undirected) graph G = (V, E) wits |V| = n
and |E| = m, find the shortest path from each vertex to all other vertices
@ Floyd’s algorithm: Find shortest paths of rank k for increasing k
@ Uses the adjacency matrix Gi._.n1..n of G
e Path of rank k: path that only traverses vertices 1 to k (not counting the
source and the destination)
o Subproblems: Pk = (Af'(,j77r,k,/‘)1§i§n,1§j§n
° A;‘)j. is the cost of the minimum path of rank k from i to j
° nf.fj is the predecessor of j in the minimum cost path of rank k from i to j

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 7/9

ALL-PAIRS SHORTEST PATH

@ Given a weighted (directed or undirected) graph G = (V, E) wits |V| =n
and |E| = m, find the shortest path from each vertex to all other vertices

@ Floyd’s algorithm: Find shortest paths of rank k for increasing k

@ Uses the adjacency matrix Gi._.n1..n of G

e Path of rank k: path that only traverses vertices 1 to k (not counting the

source and the destination)
) Subproblems: Pk = (Af'(,j77r,k,/‘)1§i§n,1§j§n
° A;‘)j. is the cost of the minimum path of rank k from i to j

° nffj is the predecessor of j in the minimum cost path of rank k from i to j
@ Recursive solution:

A Gi, if k=0
o= min{Af T AT + AT otherwise
i ifk=0
k=1 i ak—1 k—1 k—1
ﬂ’k’/ - K y Akj 1 = Akk1 i Aﬁ’j1
k ifAf T > AT+ A

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 7/9

FLOYD’S ALGORITHM (CONT’D)

@ Memoization: arrays A% and 7* for cost and predecessor

@ Evaluation order: increasing k, arbitrary for i and j

fori=1tondo
forj=1tondo

Dynamic Programming (S. D. Bruda)

0 .
A,.J. + Gj

L 7T,'7/'<—I‘

for k = 1to ndo o(nd)
fori=1to ndo

forj=1tondo
e ak—1 k—1 k—1
if A,.J < A,.,k +Ak,/’ then
| Al AT
else
k k—1 k—1
Al A T AG
Tij k

o Optimization: A single predecessor array =

© When computing f; we only need ”7/‘_1 and then we can overwrite it

CS 317, Fall 2024

8/9

FLOYD’S ALGORITHM (CONT’D)

@ Memoization: arrays A% and 7* for cost and predecessor

@ Evaluation order: increasing k, arbitrary for i and j
fori=1tondo

Dynamic Programming (S. D. Bruda)

forj=1tondo

0 .
Ai7j<— Gj
L 71','7/' — i

for k = 1to ndo o(nd)

fori=1tondo
forj=1tondo

it AT < AT+ AL then
q KTk,
| Al A
else
k k—1 k—1
Al A T AG
Tij k

o Optimization: A single predecessor array =

© When computing f; we only need ”7/‘_1 and then we can overwrite it

o Further optimization: At any step we only need A*~! and A*, so we only

need two matrices for the cost (current and previous)

CS 317, Fall 2024

8/9

THE TRAVELLING SALESMAN PROBLEM

@ Given a weighted directed graph G = ({1,2, ..., n}, E) find the
Hamiltonian Cycle of minimum cost
o Naive solution: try all the permutations, retain the one with minimal cost
(O(n2™) time)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9/9

THE TRAVELLING SALESMAN PROBLEM

@ Given a weighted directed graph G = ({1,2, ..., n}, E) find the
Hamiltonian Cycle of minimum cost
o Naive solution: try all the permutations, retain the one with minimal cost
(O(n2™) time)
@ Crux:
o Start the cycle at vertex 1
o Let the next vertex be k
@ The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for the graph induced by V' \ {1}
@ Recursive solution:
o Let g(i, S) be the length of the shortest path starting at i and going through
all the vertices in S back to 1
9. S) = { mingpeew(ij)) ifS=0
’ minjes(w((i.j)) + (. S\ {j})) otherwise
o Memoization: Table (9i)ic, .. ny jeatt....n
@ Order of evaluation: increasing second dimension, do not care for the first
@ Running time: O(n2")

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9/9

THE TRAVELLING SALESMAN PROBLEM

@ Given a weighted directed graph G = ({1,2, ..., n}, E) find the
Hamiltonian Cycle of minimum cost
o Naive solution: try all the permutations, retain the one with minimal cost
(O(n2™) time)
@ Crux:
o Start the cycle at vertex 1
o Let the next vertex be k
@ The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for the graph induced by V' \ {1}
@ Recursive solution:
o Let g(i, S) be the length of the shortest path starting at i and going through
all the vertices in S back to 1
T mines(w((7,))) + 90, S\ {j})) otherwise
o Memoization: Table (9i)ic, .. ny jeatt....n
@ Order of evaluation: increasing second dimension, do not care for the first
@ Running time: O(n2")
@ Unknown (million dollar question, literally) whether we can do better than
the naive solution for the travelling salesman and the 0/1 knapsack (and
many more problems)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9/9

