Greedy Algorithms

Stefan D. Bruda

CS 317, Fall 2025

THE GREEDY TECHNIQUE

@ Typically suitable to for optimization problems
@ Builds the solution iteratively

@ Makes a locally optimum choice in each iteration in the hope that all local
optima will lead to a global optimum

@ Guaranteed to give a “good” solution, but does not guarantee an optimal
solution for all optimization problems

algorithm GREEDY/(A: set of candidates):
solution + ()
while solution not complete do
X < SELECTBEST(A) (local optimum)
A+ A\ x
if FEASIBLE(solution U x) then
L solution + solution U x

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 1/29

MINIMUM-COST SPANNING TREES

@ A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

@0 @0 @ @

2 10 4 2 10 2 10 4
© W © @ ©© @
Graph

@ Problem: Given a weighted undirected connected graph G
@ Question: Find a spanning tree of G with minimum cost

e Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 2/29

MINIMUM-COST SPANNING TREES

@ A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

@0 @0 @ @

2 4 2 2 4
10 10 10

© W o O ©
Graph BFS tree DFS tree
Cost =17 Cost=16

@ Problem: Given a weighted undirected connected graph G
@ Question: Find a spanning tree of G with minimum cost

e Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 2/29

MINIMUM-COST SPANNING TREES

@ A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices

Q=0 @06 @ 6 @0
2104210 21042 4
© o o v O

Graph BFS tree DFS tree Min cost spanning tree
Cost =17 Cost=16 Cost = 11

@ Problem: Given a weighted undirected connected graph G
@ Question: Find a spanning tree of G with minimum cost

e Many applications including transportation networks, computer networks,
electrical grids, even financial markets

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 2/29

KRUSKALS ALGORITHM

@ For a given weighted graph G = (V, E, w):
@ Choose an edge e of minimum weight w(e)
o If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V, E, w)):
T+ 0
c«+0
L+ E
while |T| < n—1do
Selecte € L, w(e) = min{w(x) : x € R
AT (e) {w(x) }
if T U e does not contain cycles then
T« Tu{e}
c+ c+w(e)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 3/29

KRUSKALS ALGORITHM

@ For a given weighted graph G = (V, E, w):
@ Choose an edge e of minimum weight w(e)
o If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V, E, w)):
T+ 0
c«+0
L+ E
while |T| < n—1do
Select e € L, w(e) = min{w(x) : x € R}
L+ L\{e}
if T U e does not contain cycles then
T« Tu{e}
c+ c+w(e)

° Sj[ill to implement:

e Find an edge with a minimum weight
e Detect cycles

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 3/29

KRUSKALS ALGORITHM

@ For a given weighted graph G = (V, E, w):
@ Choose an edge e of minimum weight w(e)
o If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V, E, w)):
T+ 0
c«+0
L+ E
while |T| < n—1do
Select e € L, w(e) = min{w(x) : x € R}
L+ L\{e}
if T U e does not contain cycles then
T« Tu{e}
c+ c+w(e)

° Sj[ill to implement:

e Find an edge with a minimum weight
e Detect cycles

@ Data structures needed:

o List of edges sorted by weight
o Disjoint sets representing each connected component

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 3/29

KRUSKALS ALGORITHM EXAMPLE

Start: six singletons

© ®
® ® O
O

#1: choose (3,4)

ONENO)
® GO
©

#2: choose (1,3) (or

(5.6))
® G

® 0O
®

#3: choose (5,6) (or
(1,3)

® ©
2
OO0
2
©

Greedy Algorithms (S. D. Bruda)

#4: choose (1,5) (or
(3,6), for a different
tree)

#5: choose and ig-
nore (3,6) (creates
cycle)

done

CS 317, Fall 2025 4/29

KRUSKAL'S ALGORITHM (CONT’'D)

algorithm KRUSKAL(G = (V, E, w)):

T+ 0
c+0
L + MAKEQUEUE(E)
for i =1to ndo MAKESET(/)
i1
while i < n—-1do
(u, v) + DEQUEUE(L)
S1 < FINDSET(u
So < FINDSET(v
if sy # so then
UNION(S1, S2)
T« TU {éu, v)%»
c+ c+w((u,v))
i i+1

Greedy Algorithms (S. D. Bruda)

CS 317, Fall 2025

5/29

KRUSKAL'S ALGORITHM (CONT’'D)

algorithm KRUSKAL(G = (V, E,w)): @ Choice of implementation for the priority

T <—gJ queue:
f: MAKEQUEUE(E) o Sorted list: O(nlog n) to create, O(1) to
for i =1to ndo MAKESET(/) extract minimum
i1 i .
while i < n— 1 do e Min heap.. Q(n) to create, O(log n) to
(U, v) DEQUEUE(L) extract minimum
Sy < FINDSET(u i ; _ _ .
N FINDSETM @ Running time (|V| = n, |E| = m):
if sy # s t?en) o With sorted list:
UNION(sq, s _ —
T<—Tu1{ 421,v) T(n) = mlogm+ n+ m(1+2logn)
¢+ ¢+ w((u,v)) O(mlog n)
i—i+1 o With heap:
- T(n)=m+ n+ m(logm+ 2logn) =
O(m/log n)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025

5/29

KRUSKAL'S ALGORITHM (CONT’'D)

algorithm KRUSKAL(G = (V, E,w)): @ Choice of implementation for the priority

T <—gJ queue:
f: MAKEQUEUE(E) o Sorted list: O(nlog n) to create, O(1) to
for i =1to ndo MAKESET(/) extract minimum
i1 i .
while i < n— 1 do e Min heap.. Q(n) to create, O(log n) to
(U, v) DEQUEUE(L) extract minimum
Sy < FINDSET(u i ; _ _ .
N FINDSETM @ Running time (|V| = n, |E| = m):
if sy # s, then o With sorted list:
UNION(sq, s _ —
T<—T(u1{421?v) T(n) = mlogm+ n+ m(1 + 2logn)
¢+ ¢+ w((u,v)) O(mlog n)
i—i+1 o With heap:
- T(n)=m+ n+ m(logm+ 2logn) =
O(m/log n)

@ Correctness:
@ Loop invariant: The graph induced by each disjoint set Siin (S, T) is a
minimum-cost spanning tree for (S, E)
o Kruskal’s algorithm maintain a forest of minimum-cost spanning trees,
collapsing it progressively into a single overall minimum-cost spanning tree

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 5/29

PRIM’S ALGORITHM

@ Maintains a single, partial minimum-cost spanning tree
o Start with a single vertex and no edges

o Expand the tree by greedily choosing the minimum weight edge with an end
in the tree and the other end outside the tree

algorithm PRIM(G = (V,E,w), vy € V):
T+ 0
c+0
S« {V()}
while S # V do
Select v € V'\ Snearestto S
Let u € S be the nearest vertex to v
S+ Su{v}
T+ TU Ev, u);
¢+« c+w((u,v))

° T(_) keep track of candidate edges for each vertex outside the tree we
keep track of:

@ Its minimum distance from the tree
o The edge that realizes that minimum distance

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 6/29

PRIM’S ALGORITHM EXAMPLE

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 7129

PRIM’S ALGORITHM (CONT’D)

algorithm PRIM(G = (V, E,w), v € V):

T+ 0
c«+0
fori=0to ndo
distj < w(i, vp)
nearest; + vy
HEAPIFY(dist) (optional)
fori=1ton—1do
v < DEQUEUE(dist)
T < T U{(v, nearesty)
¢ < ¢+ w((v, nearesty))
Loreach neighbor x of v outside tree
o
if w(v, x) < disty then
disty < w(v, x)
nearesty < v
UPDATE(disty) (optional)

Greedy Algorithms (S. D. Bruda)

@ Can organize dist as:
e Heap: O(n) to heapify and O(log n)

to update but O(1) to get the
minimum

e Plain array: no need to heapify or

update, but O(n) to get the
minimum

@ Running time (|V| = n, |E| = m):
@ The foreach loop runs O(m) times

overall (amortized)

o Heap:

T(n)=n+n+nlogn+ mlogn=
O(mlog n)

o Array:

T(n)=n+nxn+m=0(r?)

CS 317, Fall 2025 8/29

KRUSKAL AND PRIM (CONT'D)

@ Correctness of Prim:

@ Loop invariant: The partial tree is a minimum-cost spanning tree for the
vertices it contains

@ Comparison between Prim and Kruskal:

Running time Sparse graphs Dense graphs
(m=o(n?/logn)) (m= O(r?))
Kruskal O(mlog n) O(nlog n) O(n? log n)
Prim Array O(n?) O(n?) O(n?)
Heap O(mlogn) O(nlogn) O(n? log n)

o No difference between Kruskal and Prim using a heap on sparse graphs
o Notable advantage for Prim using an array on dense graphs

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 9/29

THERE IS ONLY ONE MINIMUM SPANNING TREE!

If all the edge weights in a connected graph G are distinct then G has a
unique minimum-cost spanning tree

@ Proof by contrapositive:

o Let T and T’ be two minimum-cost spanning trees of G
o Let e and €' be the minimum weight edge in T\ T" and T’ \ T respectively,
w(e) < w(e)
e T'uU{e} must contain cycle C that goes through e, lete” € C\ T
It must be that w(e”) > w(e’) > w(e) (since e” € T'\ T)
o Let 7" =T u{e}\ {€"} (greedy replace)
@ T’ is a spanning tree (we replaced one edge in a cycle with another in the same
cycle
° MY(T)) =w(T") +w(e) —w(e”)sow(T") < w(T’) (since w(e) < w(e"))
@ But T’ is @ minimum-cost spanning tree, so it must be that w(T"") = w(T’) and
so w(e) = w(e”)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 10/29

THERE IS ONLY ONE MINIMUM SPANNING TREE!

If all the edge weights in a connected graph G are distinct then G has a
unique minimum-cost spanning tree

@ Proof by contrapositive:

o Let T and T’ be two minimum-cost spanning trees of G
o Let e and €' be the minimum weight edge in T\ T" and T’ \ T respectively,
w(e) < w(e’)
e T'uU{e} must contain cycle C that goes through e, lete” € C\ T
It must be that w(e”) > w(e’) > w(e) (since e” € T'\ T)
o Let 7" =T u{e}\ {€"} (greedy replace)
@ T’ is a spanning tree (we replaced one edge in a cycle with another in the same
cycle)
o w(T")=w(T")+ w(e) —w(e"”)sow(T"”) < w(T’) (since w(e) < w(e"))
@ But T’ is a minimum-cost spanning tree, so it must be that w(T7"") = w(T’) and
so w(e) = w(e”)
@ This kind of reasoning also works for not necessarily distinct edge
weights as long as we use a consistent way of breaking ties

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 10/29

THERE IS ONLY ONE ALGORITHM!

@ Edge classification:
o Useless: (u, v) ¢ F with u and v in the same connected component of F
e Safe: minimum-weigth (u, v) with only u or v in a connected component of F
@ Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 11/29

THERE IS ONLY ONE ALGORITHM!

@ Edge classification:
o Useless: (u, v) ¢ F with u and v in the same connected component of F
e Safe: minimum-weigth (u, v) with only u or v in a connected component of F
@ Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

The minimum-cost spanning tree of G contains every safe edge I

@ Greedy-replace proof technique:
@ Show that the minimum-cost spanning tree of any S C G contains the safe
edge efor S
o Let T be a minimum-cost spanning tree of G not containing e
e It must have an edge €', w(e’) > w(e) that connects S with the rest of G
e Then T = T\ {€'} U {e} is a spanning tree with w(T') < w(T), a
contradiction

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 11/29

THERE IS ONLY ONE ALGORITHM!

@ Edge classification:
o Useless: (u, v) ¢ F with u and v in the same connected component of F
e Safe: minimum-weigth (u, v) with only u or v in a connected component of F
@ Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

The minimum-cost spanning tree of G contains every safe edge I

@ Greedy-replace proof technique:
@ Show that the minimum-cost spanning tree of any S C G contains the safe
edge efor S
o Let T be a minimum-cost spanning tree of G not containing e
e It must have an edge €', w(e’) > w(e) that connects S with the rest of G
e Then T = T\ {€'} U {e} is a spanning tree with w(T') < w(T), a
contradiction

The minimum-cost spanning tree contains no useless edge I

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 11/29

SINGLE-SOURCE SHORTEST PATH

@ We are given a directed, weighted graph G = (V, E, w)

o Notation: A path p = (w, v1, ..., k) connects vy and vy and we write Vob Vi
@ The shortest-path weight from some vertex u to some vertex v is:

s(u,v) = { min{w(p): ufv} if there exists a path from u to v
’ o) otherwise

o A shortest path from u to v is a path p such that u-v and w(p) = &(u, v)

@ When we are interested in finding shortest paths in a graph we solve a
shortest-path problem

@ Single source, single destination (e.g., finding the shortest way to travel from
point A to point B)

e Single source, all destinations (e.g., broadcasting a message from one node
in a network to all the other nodes)

@ All pairs shortest path (e.g., finding the fastest way to send information from
any node in a network to any other node)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 12/29

THE SINGLE-SOURCE SHORTEST-PATH PROBLEM

One shortest path contains other shortest paths within it. Formally, if
p=(Vo,Vi,...,Vi,..., V..., Vk) is a shortest part from vy to vi then the
sub-path (vj,...,v;) of p is a shortest path between v; and v;

@ The lemma implies that the single source, single destination variant does
not make sense since solving it effectively solves the single source, all
destinations variant:

Input: a weighted graph G and a Output: the shortest paths be-
source node s: tween s and any other vertex in G:

t X

@ The lemma also ensures that a greedy approach will work

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 13/29

INITIALIZATION

For each vertex v in the input graph, we keep two values:
@ d, is a shortest-path estimate, initially oo for all the vertices but s
@ m, is the predecessor of v in the shortest path, initially NIL

o our shortest path algorithm will set 7, for all the vertices in the graph
@ then, the predecessor link from some vertex v to s runs backwards along a
shortest path from s to v

algorithm INITIALIZESINGLESOURCE(G = (V, E,w), s € V; d,):
foreach v € V do

L dy + oo
7y < NIL

ds(—o

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 14/29

@ All algorithms that solve the shortest-path problem are built around the
relaxation technique

@ Simple idea: if we find something better, we go for it

—known-shertestpathrtoz—

s
shortest path to x

algorithm RELAX(y,z,w € V; d, 7):
if d; > dy + w(y, z) then
shortestpathtoy y I d; < dy + w(y,z)
A L DECREASEKEY(Q, z, d>)
o Tz Y
new shortest path to z

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 15/29

DIUKSTRA’S ALGORITHM

@ Dijkstra’s algorithm solves the single-source shortest-path problem on a
weighted, directed graph G = (V, E, w) with positive edge weights

algorithm DIUKSTRA(G = (V,E,w), s € V;m):
INITIALIZESINGLESOURCE(G, S)
S+ 0
Q < MAKEQUEUE(V, d)
while —-ISEMPTY(Q) do

u < DEQUEUE(Q)

S+« Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

@ The algorithm maintains a set S of vertices whose final shortest path from
the source s has been already determined

o The algorithm (greedily) keeps selecting the most promising edge u € V'\ S,
adds it to S, and relaxes all the edges leaving u

@ The “most promising” edge is the one with minimum dy
@ Priority queue Q for quick access to this most promising edge

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 16/29

DIUKSTRA’'S ALGORITHM (CONT'D)

algorithm DIUKSTRA(G = (V,E,w),s € V; n):
INITIALIZESINGLESOURCE(G, S)
S+ 10
Q < MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u + DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 17/29

DIUKSTRA’'S ALGORITHM (CONT'D)

algorithm DIUKSTRA(G = (V,E,w),s € V; n):
INITIALIZESINGLESOURCE(G, S)
S+ 10
Q + MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u <+ DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

t

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 18/29

DIUKSTRA’'S ALGORITHM (CONT'D)

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 19/29

DIUKSTRA’S ALGORITHM ANALYSIS

@ Dijkstra’s algorithm relies heavily of operations on the queue Q, namely
ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, t, (n),
t_(n), t«(n), respectively (with n=|V|, m= |E|)

algorithm DIUKSTRA(G = (V,E,w), s € V;m):
INITIALIZESINGLESOURCE(G, S)
S+ 0
Q < MAKEQUEUE(V, d)
while -ISEMPTY(Q) do

u < DEQUEUE(Q)

S+« Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

@ Total running time: O(n x t.(n) + n x t_(n) + m x t(n))

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 20/29

DIUKSTRA’S ALGORITHM ANALYSIS

@ Dijkstra’s algorithm relies heavily of operations on the queue Q, namely
ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, t, (n),
t_(n), t(n), respectively (with n = |V|, m = |E|)

algorithm DIUKSTRA(G = (V,E,w), s € V;m):
INITIALIZESINGLESOURCE(G, S)
S+ 0
Q < MAKEQUEUE(V, d)
while -ISEMPTY(Q) do

u < DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

@ Total running time: O(n x t.(n) + n x t_(n) + m x t(n))

@ Correctness, or we always pick the right vertex: Let u; and u;. ¢ be the
vertices returned by two successive calls to DEQUEUE; then d,, < d,,,
just after the extraction

Either (u;, uir1) € E and uj1 is relaxed, so dy,,, = dy, + w((Uj, Ui1)) > dy,

Or uj4 is not relaxed so it is already in the queue so dy,,, > dy,

Trivial generalization for u; and uj «

No vertex is dequeued more than once

Proof only works for positive edge weights

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 20/29

ANALYSIS (CONT'D)

@ The performance of Dijkstra’s algorithm depends heavily of how the
priority queue is implemented (again!)

t (n) t (n) t(n)

Array queue O(1) O(n) o(1)
Heap queue O(logn) O(logn) O(logn)

Running time Sparse graphs Dense graphs
(m=o(r?/logn)) (m= O(n?))
Array Q O(n* + m) o(n?) o(n?)
Heap Q O((n+ m)logn) O(mlog n) O(n? log n)

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 21/29

DATA COMPRESSION

@ Represent data using the minimum amount of bits
@ Lossy
o Compressed data cannot be restored in its original form
@ Significant compression ratio
@ Mostly used for multimedia encoding
e Examples: JPEG (Joint Photographic Experts Group) and MPEG (Moving
Picture Experts Group)

@ Lossless
o Compressed data can be perfectly reconstructed
o Lower compression ratio
o Examples: Zip, Gif, Huffman encoding

@ The Huffman code is an optimal variable-length prefix code

@ Minimizes the average number of bits/character based on the character
frequencies of occurrence
o Code system with the prefix property (prefix code): no code is a prefix of any
other code
@ Necessary for decoding variable-length codes
@ Example: A, B, C, D can be encoded respectively as 0, 10, 110, 111, but not as
1,10, 110, 111 (since the code for A would be a prefix for B, C and D)
@ Note in passing that fixed length codes (e.g. 00, 01, 10, 11) are all prefix codes

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 22/29

THE HUFFMAN CODE

@ Example: Five characters with their frequency:
A (5%), B (25%), C (20%), D (15%), E (35%)
o Traditional (fixed-length encoding):
A=000, B=001, C=010, D=011, E=100 (3 bits/character)
@ Prefix code tree:
@ Choose and remove the letter with highest frequency, assign as left child
o Repeat for the right child
o Label left branches with 0 and right branches with 1
o Code for a character is the path from root to letter
algorithm HUFFMANLITE(C): Letter Freq Code Weighted # bits

/I C = set of n characters A 0.05 1111 4x0.05=0.2
H + MAKEQUEUE(C) B 0.25 10 2x025=0.5
T + new node (¢} 0.20 110 3x0.20=0.6
fori=1ton—1do D 0.15 1110 4x0.15=0.6
E 035 0 1x0.35=0.35

T.left <— DEQUEUE(H)
T.right +— new node

T « T.right @ Average bits per letter:
T right « DEQUEUE(H) 0.2+0.5+0.6+0.6+0.35=2.25
L //Setcodes in a BFS traversal @ Improvement of 25%

@ Correctness: letters at different depths = different all-1 prefixes before 0
@ Running time: ©(nlog n) (both array and heap)

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 23/29

THE HUFFMAN CODE (CONT'D)

@ We can do better by assigning frequencies to internal nodes and
choosing the best two frequencies to be the children of a new node:

algorithm HUFFMAN(C):

/I C = set of n characters

H < MAKEQUEUE(C)

while H # () do
T < new node
T left < DEQUEUE(H){
T.right <+— DEQUEUE(H)
T.freq < T.left.freq+ T .right.freq
INSERT(T)

L // Set codes in a BFS traversal
@ Running time: ©(n?) (sorted list) or ©(nlog n) (heap)
Letter Freq Code Weighted # bits

A 0.05 000 3 x0.05=0.15
B 0.25 10 2x025=05
C 0.20 01 2x020=04
D 0.15 001 3x0.15=045
E 0.35 11 2x035=0.7

@ Average bits per letter: 2.2, 27% improvement
@ Correctness: different paths ensure at least one different bit

Greedy Algorithms (S. D. Bruda)

CS 317, Fall2025 24/29

OPTIMAL TEXT COMPRESSION

@ Huffman’s algorithm produces an optimal tree
e Show that the two least frequent characters have to be siblings in an optimal
tree using a greedy-replace technique
e Proceed upward by induction
o See textbook
@ Text compression algorithm:
e Calculate the frequency of all letters in the text
o Construct the Huffman tree
e Encode all the text using the codes obtained from the Huffman tree
@ Text recovery algorithm:
Traverse the Huffman tree from root to a leaf according to the input bits
Output the leaf label

Repeat traversal for as long as there are bits in the input
Note: this is why we need a code system with the prefix property!

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 25/29

THE KNAPSACK PROBLEM

e Given w = (wy, wo, ..., w,) and p = (p1, P2, ..., Pn), find
X = (X1, Xo,...,Xp) such that >_7 | x;p; is maximized subject to
Sixiw < C
e Given n objects, each with a corresponding weight w; and profit p; and a
knapsack of specific capacity C, choose the objects (or fractions) that you
can fit in the knapsack so that the total profit is maximized
@ Two versions:

e Fractional knapsack: 0 < x; < 1
e 0/1 knapsack: x; € {0,1}

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 26/29

FRACTIONAL KNAPSACK

o Greedy strategies:
@ Take objects one at a time in increasing order of their weights, until the
knapsack is full (a fraction may need to be taken for the last object)
@ Take the objects in decreasing order of their profits
© Take the objects in decreasing order of their profits per unit weight ratio
@ Example: w = (5 10, 20) Cc = 30
p = (50, 60, 140)
p/w = (10, 6, 7)
@ x=(1,1,15/20), P =50+ 60 + 140 x 15/20 = 215
Q@ x=1(0,1,1), P=60+ 140 = 200
@ x=(1,5/10,1), P=50+60 x 5/10 + 140 = 220
@ In fact it can be shown that the third strategy will always guarantee an
optimal solution
@ Suppose that we have an optimal solution that uses some amount of the
lower value density object
o Then we substitute that with the same weight of the higher value density
object and we obtain a better solution, a contradiction

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 27/29

0/1 KNAPSACK

w = (5 10, 20) w = (18, 15, 10)
p = (50, 60, 140) p = (25 24, 15)

p/w = (10, 6, 7) p/w = (138, 16, 15)
c = 30 c = 20

@ Byw: x=(1,1,0), P=110 @ Byw: x=(0,0,1),P=15

@ Byp: x=(0,1,1), P =200 @ Byp: x_(100),P:

@ Byp/w:x=(1,0,1), P=190 @ Byp/w:x=1(0,1,0), P =24
w = (5 10, 20
p = (80, 50, 120)

p/w = (16 5 6)
c = 20

@ By w: x=(1,1,0), P=130

@ Byp: x=(0,0,1), P =120

@ No greey strategy guarantees an optimal solution for the 0/1 knapsack
problem

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 28/29

THE GREEDY-CHOICE PROPERTY

The greedy technique works only for those problems that have the
greedy-choice property: We can assemble a globally optimal solution by
making locally optimal (greedy) choices

@ Goes hand in hand with the greedy-replace proof technique

@ Many problems have the greedy-choice property, many more do not
(such as the 0/1 knapsack)

@ For some problems without the greedy-choice property may obtain a
“good enough” solution for some reasonable definition of “good enough”
o Good example: 0/1 knapsack
@ To be continued

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 29/29

