
Introduction to Complexity Theory

Stefan D. Bruda

CS 317, Fall 2024

PROBLEMS AND PROBLEMS

When designing algorithms we think about problems individually
Nice to know in advance what kind of algorithms we can design

Convenient then to consider classes or problems with similar algorithmic
properties
Focus on decision problems = problems with true/false answers or
positive/negative instances

Example of meaningful complexity classes:
Semi-decidable problems, for which we have algorithms that can provide the
correct answer to positive instances but not to negative instances

Includes exactly all specifiable problems

Decidable problems, for which algorithms exist
Intractable problems, for which it is proven that no polynomial algorithm exist
(decidability in Presburger arithmetic, position evaluation in Go, etc.)
Tractable problems, for which polynomial algorithms exist (sorting, shortest
path, optimal BST, etc.)

Neither here nor there: problems with no known polynomial time algorithms
but not proven to have no such an algorithm

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 1 / 15

PROBLEMS AND PROBLEMS

When designing algorithms we think about problems individually
Nice to know in advance what kind of algorithms we can design

Convenient then to consider classes or problems with similar algorithmic
properties
Focus on decision problems = problems with true/false answers or
positive/negative instances

Example of meaningful complexity classes:
Semi-decidable problems, for which we have algorithms that can provide the
correct answer to positive instances but not to negative instances

Includes exactly all specifiable problems

Decidable problems, for which algorithms exist
Intractable problems, for which it is proven that no polynomial algorithm exist
(decidability in Presburger arithmetic, position evaluation in Go, etc.)
Tractable problems, for which polynomial algorithms exist (sorting, shortest
path, optimal BST, etc.)

Neither here nor there: problems with no known polynomial time algorithms
but not proven to have no such an algorithm

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 1 / 15

THE HALTING PROBLEM

Input: A string P describing an algorithm and a string w as input for P
Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

Suppose that the problem is decidable and so is solved by HALT(P,w)
Consider then the following algorithm:
algorithm DIAG(x):

if HALTS(x , x) then
while TRUE do nothing

else return TRUE

Does DIAG(DIAG) halt?
If it halts then HALTS(DIAG, DIAG) returns TRUE (since HALTS solves the halting
problem), which means that DIAG(DIAG) does not halt, a contradiction
If it does not halt; then HALTS(DIAG, DIAG) returns FALSE (since HALTS solves
the halting problem), which means that DIAG(DIAG) halts and returns TRUE,
another contradiction

Theorem (Henry Gordon Rice, 1951)
All nontrivial and extensional questions about algorithms are undecidable

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 2 / 15

THE HALTING PROBLEM

Input: A string P describing an algorithm and a string w as input for P
Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

Suppose that the problem is decidable and so is solved by HALT(P,w)
Consider then the following algorithm:
algorithm DIAG(x):

if HALTS(x , x) then
while TRUE do nothing

else return TRUE

Does DIAG(DIAG) halt?

If it halts then HALTS(DIAG, DIAG) returns TRUE (since HALTS solves the halting
problem), which means that DIAG(DIAG) does not halt, a contradiction
If it does not halt; then HALTS(DIAG, DIAG) returns FALSE (since HALTS solves
the halting problem), which means that DIAG(DIAG) halts and returns TRUE,
another contradiction

Theorem (Henry Gordon Rice, 1951)
All nontrivial and extensional questions about algorithms are undecidable

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 2 / 15

THE HALTING PROBLEM

Input: A string P describing an algorithm and a string w as input for P
Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

Suppose that the problem is decidable and so is solved by HALT(P,w)
Consider then the following algorithm:
algorithm DIAG(x):

if HALTS(x , x) then
while TRUE do nothing

else return TRUE

Does DIAG(DIAG) halt?
If it halts then HALTS(DIAG, DIAG) returns TRUE (since HALTS solves the halting
problem), which means that DIAG(DIAG) does not halt, a contradiction
If it does not halt; then HALTS(DIAG, DIAG) returns FALSE (since HALTS solves
the halting problem), which means that DIAG(DIAG) halts and returns TRUE,
another contradiction

Theorem (Henry Gordon Rice, 1951)
All nontrivial and extensional questions about algorithms are undecidable

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 2 / 15

PROBLEMS REDEFINED

Abstract problem: relation Q over the set I of problem instances and the
set S of problem solutions: Q ⊆ I × S

Complexity theory deals with decision problems or languages (S = {0, 1})
I partitioned into positive and negative problem instances
Technically a language is a set of strings
A problem Q ⊆ I × {0, 1} ca be rewritten as the language (set)
L(Q) = {w ∈ I : (w , 1) ∈ Q}

Many abstract problems are optimization problems instead; however, we can
usually restate an optimization problem as a decision problem which
requires the same amount of resources to solve

Concrete problem: an abstract decision problem with I = {0,1}∗
Abstract problem mapped on concrete problem using an encoding
e : I → {0, 1}∗
Q ⊆ I × {0, 1} mapped to the concrete problem e(Q) ⊆ e(I)× {0, 1}
Encodings will not affect the performance of an algorithm as long as they are
polynomially related

An algorithm solves a concrete problem in time O(T (n)) whenever the
algorithm produces in O(T (n)) time a solution for any problem instance i
with |i | = n

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 3 / 15

PROBLEMS REDEFINED

Abstract problem: relation Q over the set I of problem instances and the
set S of problem solutions: Q ⊆ I × S

Complexity theory deals with decision problems or languages (S = {0, 1})
I partitioned into positive and negative problem instances
Technically a language is a set of strings
A problem Q ⊆ I × {0, 1} ca be rewritten as the language (set)
L(Q) = {w ∈ I : (w , 1) ∈ Q}

Many abstract problems are optimization problems instead; however, we can
usually restate an optimization problem as a decision problem which
requires the same amount of resources to solve

Concrete problem: an abstract decision problem with I = {0,1}∗
Abstract problem mapped on concrete problem using an encoding
e : I → {0, 1}∗
Q ⊆ I × {0, 1} mapped to the concrete problem e(Q) ⊆ e(I)× {0, 1}
Encodings will not affect the performance of an algorithm as long as they are
polynomially related

An algorithm solves a concrete problem in time O(T (n)) whenever the
algorithm produces in O(T (n)) time a solution for any problem instance i
with |i | = n

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 3 / 15

LANGUAGES? PROBLEMS?

Complexity theory analyzes problems from the perspective of how many
resources (e.g., time, storage) are necessary to solve them

Given some abstract problem that requires certain resource (time) bounds to
solve, it is generally easy to find a language that requires the same resource
bounds to decide
Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

Traveling salesman (TSP): Given n ≥ 2, a matrix (dij)1≤i,j≤n with dij > 0
and dii = 0, find a permutation π of {1,2, . . . ,n} such that c(π), the cost
of π is minimal, where c(π) = dπ1π2 + dπ2π3 + · · ·+ dπn−1πn + dπnπ1

TSP the language (take 1): {((dij)1≤i,j≤n,B) : n ≥ 2,B ≥ 0, there exists a
permutation π such that c(π) ≤ B}
TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 4 / 15

LANGUAGES? PROBLEMS?

Complexity theory analyzes problems from the perspective of how many
resources (e.g., time, storage) are necessary to solve them

Given some abstract problem that requires certain resource (time) bounds to
solve, it is generally easy to find a language that requires the same resource
bounds to decide
Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

Traveling salesman (TSP): Given n ≥ 2, a matrix (dij)1≤i,j≤n with dij > 0
and dii = 0, find a permutation π of {1,2, . . . ,n} such that c(π), the cost
of π is minimal, where c(π) = dπ1π2 + dπ2π3 + · · ·+ dπn−1πn + dπnπ1

TSP the language (take 1): {((dij)1≤i,j≤n,B) : n ≥ 2,B ≥ 0, there exists a
permutation π such that c(π) ≤ B}
TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 4 / 15

LANGUAGES? PROBLEMS? (CONT’D)

Clique: Given an undirected graph G = (V ,E), find the maximal set
C ⊆ V such that ∀ vi , vj ∈ C : (vi , vj) ∈ E (C is a clique of G)

Clique, the language: {(G = (V ,E),K) : K ≥ 2 : there exists a clique C of V
such that |C| ≥ K}

SAT: Fix a set of variables X = {x1, x2, . . . , xn} and let
X = {x1, x2, . . . , xn}

An element of X ∪ X is called a literal
A formula (or set/conjunction of clauses) is α1 ∧ α2 ∧ · · · ∧ αm where
αi = xa1 ∨ xa2 ∨ · · · ∨ xak , 1 ≤ i ≤ m, and xai ∈ X ∪ X
An interpretation (or truth assignment) is a function I : X → {⊤,⊥}
A formula F is satisfiable iff there exists an interpretation under which F
evaluates to ⊤.
SAT = {F : F is satisfiable }

2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)
Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF,
3-CNF) because the input formulae are written in conjunctive normal form

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 5 / 15

LANGUAGES? PROBLEMS? (CONT’D)

Clique: Given an undirected graph G = (V ,E), find the maximal set
C ⊆ V such that ∀ vi , vj ∈ C : (vi , vj) ∈ E (C is a clique of G)

Clique, the language: {(G = (V ,E),K) : K ≥ 2 : there exists a clique C of V
such that |C| ≥ K}

SAT: Fix a set of variables X = {x1, x2, . . . , xn} and let
X = {x1, x2, . . . , xn}

An element of X ∪ X is called a literal
A formula (or set/conjunction of clauses) is α1 ∧ α2 ∧ · · · ∧ αm where
αi = xa1 ∨ xa2 ∨ · · · ∨ xak , 1 ≤ i ≤ m, and xai ∈ X ∪ X
An interpretation (or truth assignment) is a function I : X → {⊤,⊥}
A formula F is satisfiable iff there exists an interpretation under which F
evaluates to ⊤.
SAT = {F : F is satisfiable }

2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)

Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF,
3-CNF) because the input formulae are written in conjunctive normal form

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 5 / 15

LANGUAGES? PROBLEMS? (CONT’D)

Clique: Given an undirected graph G = (V ,E), find the maximal set
C ⊆ V such that ∀ vi , vj ∈ C : (vi , vj) ∈ E (C is a clique of G)

Clique, the language: {(G = (V ,E),K) : K ≥ 2 : there exists a clique C of V
such that |C| ≥ K}

SAT: Fix a set of variables X = {x1, x2, . . . , xn} and let
X = {x1, x2, . . . , xn}

An element of X ∪ X is called a literal
A formula (or set/conjunction of clauses) is α1 ∧ α2 ∧ · · · ∧ αm where
αi = xa1 ∨ xa2 ∨ · · · ∨ xak , 1 ≤ i ≤ m, and xai ∈ X ∪ X
An interpretation (or truth assignment) is a function I : X → {⊤,⊥}
A formula F is satisfiable iff there exists an interpretation under which F
evaluates to ⊤.
SAT = {F : F is satisfiable }

2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)
Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF,
3-CNF) because the input formulae are written in conjunctive normal form

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 5 / 15

NONDETERMINISTIC ALGORITHMS

A nondeterministic algorithm is an algorithm that can be in more places
at once while deciding a problem

Sole additional operation is the nondeterministic guess of a bit: GUESS
returns 0 and 1 at the same time
After a guess the algorithm continues in parallel for both cases 0 and 1
The algorithm returns TRUE iff at least one of the parallel paths return TRUE
Running time: the running time of the longest parallel path
Example:

algorithm ISCOMPOSITE(k):
f1 ← 1
f2 ← 1
for i = 1 to log k do f1 ← 2× f1 + GUESS
for i = 1 to log k do f2 ← 2× f2 + GUESS
return k = f1 × f2

Running time: O(n + t×(n)), with t×(n) the time it takes to multiply n-bit
numbers
Correctness: f1 and f2 range over all log k -bit numbers = all possible factors of n
If f1 × f2 is never equal to n then all paths return FALSE (so ISCOMPOSITE
returns FALSE), otherwise at least one path returns TRUE (so ISCOMPOSITE
returns TRUE)

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 6 / 15

NONDETERMINISTIC ALGORITHMS (CONT’D)

Theorem
A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2r(n)) time

After a guess follow the two paths sequentially, one after the other
The running time doubles after each guess
In the worst case every step is a guess, hence the O(2r(n)) overall
running time

Alternatively, think about the running paths of a deterministic algorithm as
a sequence of states

The length of the sequence is the running time

By contrast the running time of a nondeterministic algorithm branches at
each guess forming a binary tree

The running time is the height of the tree
A deterministic algorithm has to traverse the whole tree

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 7 / 15

NONDETERMINISTIC ALGORITHMS (CONT’D)

Theorem
A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2r(n)) time

After a guess follow the two paths sequentially, one after the other
The running time doubles after each guess
In the worst case every step is a guess, hence the O(2r(n)) overall
running time

Alternatively, think about the running paths of a deterministic algorithm as
a sequence of states

The length of the sequence is the running time

By contrast the running time of a nondeterministic algorithm branches at
each guess forming a binary tree

The running time is the height of the tree
A deterministic algorithm has to traverse the whole tree

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 7 / 15

NONDETERMINISTIC ALGORITHMS (CONT’D)

Theorem
A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2r(n)) time

After a guess follow the two paths sequentially, one after the other
The running time doubles after each guess
In the worst case every step is a guess, hence the O(2r(n)) overall
running time

Alternatively, think about the running paths of a deterministic algorithm as
a sequence of states

The length of the sequence is the running time

By contrast the running time of a nondeterministic algorithm branches at
each guess forming a binary tree

The running time is the height of the tree
A deterministic algorithm has to traverse the whole tree

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 7 / 15

A FEW COMPLEXITY CLASSES

P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = nO(1) time
NP: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time
EXP: The class of exactly all problems solved by (deterministic)
algorithms running in 2nO(1)

time

Corollary
P ⊆ NP ⊆ EXP

True or false: P = NP

– open question (since 1971, arguably earlier)
Algorithms for problems in NP consist of a nondeterministic guessing
step followed by a deterministic verification step

Clique: guess a set of vertices, then verify that the guessed set is a clique
Hamiltonian cycle: guess a permutation of vertices, then verify that the
guessed permutation forms a cycle

Alternative definition for NP: A problem Q ⊆ I × {0,1} is in NP iff the
following problem is in P: Given w ∈ I, determine whether (w ,1) ∈ Q

The problem becomes easy if we take the guess out

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 8 / 15

A FEW COMPLEXITY CLASSES

P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = nO(1) time
NP: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time
EXP: The class of exactly all problems solved by (deterministic)
algorithms running in 2nO(1)

time

Corollary
P ⊆ NP ⊆ EXP

True or false: P = NP – open question (since 1971, arguably earlier)
Algorithms for problems in NP consist of a nondeterministic guessing
step followed by a deterministic verification step

Clique: guess a set of vertices, then verify that the guessed set is a clique
Hamiltonian cycle: guess a permutation of vertices, then verify that the
guessed permutation forms a cycle

Alternative definition for NP: A problem Q ⊆ I × {0,1} is in NP iff the
following problem is in P: Given w ∈ I, determine whether (w ,1) ∈ Q

The problem becomes easy if we take the guess out

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 8 / 15

A FEW COMPLEXITY CLASSES

P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = nO(1) time
NP: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time
EXP: The class of exactly all problems solved by (deterministic)
algorithms running in 2nO(1)

time

Corollary
P ⊆ NP ⊆ EXP

True or false: P = NP – open question (since 1971, arguably earlier)
Algorithms for problems in NP consist of a nondeterministic guessing
step followed by a deterministic verification step

Clique: guess a set of vertices, then verify that the guessed set is a clique
Hamiltonian cycle: guess a permutation of vertices, then verify that the
guessed permutation forms a cycle

Alternative definition for NP: A problem Q ⊆ I × {0,1} is in NP iff the
following problem is in P: Given w ∈ I, determine whether (w ,1) ∈ Q

The problem becomes easy if we take the guess out
Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 8 / 15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p,w ,K):
// guess a set of objects
O ← ∅
for i = 1 to n do

if GUESS = 1 then O ← O ∪ {i}
// calculate the weight and profit
W ← 0
P ← 0
foreach i ∈ O do

W ← W + wi
P ← P + pi

return W ≤ C ∧ P ≥ K

algorithm CLIQUE(G = (V ,E), K):
// guess a set of vertices
C ← ∅
foreach v ∈ V do

if GUESS = 1 then C ← C ∪ {v}
// check if C is a clique
foreach u ∈ C do

foreach v ∈ C do
if u ̸= v ∧ (u, v) ̸∈ E then

return FALSE

return |C| ≥ K

algorithm GUESSNUMBER(n):
k ← 0
for i = 1 to log n do

k ← 2× k + GUESS

return k

algorithm TSP(d1...n,1...n, K):
// guess n numbers
π ← ⟨⟩
for i = 1 to n do

π ← π + ⟨GUESSNUMBER(n)⟩
// verify that π is a permutation
for i = 1 to n do

for j = 1 to n do
if πi = πj then return FALSE

// calculate the cost of cycle π
c ← 0
for i = 1 to n do

c ← c + dπi ,π(i+1) mod n

return c ≤ K

All the “brute force” solutions discussed
earlier are effectively polynomial time
nondeterministic algorithms!

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 9 / 15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p,w ,K):
// guess a set of objects
O ← ∅
for i = 1 to n do

if GUESS = 1 then O ← O ∪ {i}
// calculate the weight and profit
W ← 0
P ← 0
foreach i ∈ O do

W ← W + wi
P ← P + pi

return W ≤ C ∧ P ≥ K

algorithm CLIQUE(G = (V ,E), K):
// guess a set of vertices
C ← ∅
foreach v ∈ V do

if GUESS = 1 then C ← C ∪ {v}
// check if C is a clique
foreach u ∈ C do

foreach v ∈ C do
if u ̸= v ∧ (u, v) ̸∈ E then

return FALSE

return |C| ≥ K

algorithm GUESSNUMBER(n):
k ← 0
for i = 1 to log n do

k ← 2× k + GUESS

return k

algorithm TSP(d1...n,1...n, K):
// guess n numbers
π ← ⟨⟩
for i = 1 to n do

π ← π + ⟨GUESSNUMBER(n)⟩
// verify that π is a permutation
for i = 1 to n do

for j = 1 to n do
if πi = πj then return FALSE

// calculate the cost of cycle π
c ← 0
for i = 1 to n do

c ← c + dπi ,π(i+1) mod n

return c ≤ K

All the “brute force” solutions discussed
earlier are effectively polynomial time
nondeterministic algorithms!

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 9 / 15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

A problem Q can be reduced to another problem Q′ if any instance of Q
can be “easily rephrased” as an instance of Q′

If Q reduces to Q′ then Q is “not harder to solve” than Q′

Polynomial reduction: A language L1 is polynomial-time reducible to a
language L2 (L1 ≤P L2) iff there exists a polynomial algorithm F that
computes the function f : {0,1}∗ → {0,1}∗ such that

∀ x ∈ {0,1}∗ : x ∈ L1 iff f (x) ∈ L2
Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
1 ≤P is a preorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
2 L1 ≤P L2 ∧ L2 ∈ P ⇒ L1 ∈ P

A problem L is NP-hard iff ∀L′ ∈ NP : L′ ≤P L
A problem L is NP-complete (L ∈ NPC) iff L is NP-hard and L ∈ NP

Theorem
Let L be some NP-complete problem; then P = NP iff L ∈ P

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 10 / 15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

A problem Q can be reduced to another problem Q′ if any instance of Q
can be “easily rephrased” as an instance of Q′

If Q reduces to Q′ then Q is “not harder to solve” than Q′

Polynomial reduction: A language L1 is polynomial-time reducible to a
language L2 (L1 ≤P L2) iff there exists a polynomial algorithm F that
computes the function f : {0,1}∗ → {0,1}∗ such that

∀ x ∈ {0,1}∗ : x ∈ L1 iff f (x) ∈ L2
Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
1 ≤P is a preorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
2 L1 ≤P L2 ∧ L2 ∈ P ⇒ L1 ∈ P

A problem L is NP-hard iff ∀L′ ∈ NP : L′ ≤P L
A problem L is NP-complete (L ∈ NPC) iff L is NP-hard and L ∈ NP

Theorem
Let L be some NP-complete problem; then P = NP iff L ∈ P

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 10 / 15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

A problem Q can be reduced to another problem Q′ if any instance of Q
can be “easily rephrased” as an instance of Q′

If Q reduces to Q′ then Q is “not harder to solve” than Q′

Polynomial reduction: A language L1 is polynomial-time reducible to a
language L2 (L1 ≤P L2) iff there exists a polynomial algorithm F that
computes the function f : {0,1}∗ → {0,1}∗ such that

∀ x ∈ {0,1}∗ : x ∈ L1 iff f (x) ∈ L2
Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
1 ≤P is a preorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
2 L1 ≤P L2 ∧ L2 ∈ P ⇒ L1 ∈ P

A problem L is NP-hard iff ∀L′ ∈ NP : L′ ≤P L
A problem L is NP-complete (L ∈ NPC) iff L is NP-hard and L ∈ NP

Theorem
Let L be some NP-complete problem; then P = NP iff L ∈ P

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 10 / 15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

A problem Q can be reduced to another problem Q′ if any instance of Q
can be “easily rephrased” as an instance of Q′

If Q reduces to Q′ then Q is “not harder to solve” than Q′

Polynomial reduction: A language L1 is polynomial-time reducible to a
language L2 (L1 ≤P L2) iff there exists a polynomial algorithm F that
computes the function f : {0,1}∗ → {0,1}∗ such that

∀ x ∈ {0,1}∗ : x ∈ L1 iff f (x) ∈ L2
Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
1 ≤P is a preorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
2 L1 ≤P L2 ∧ L2 ∈ P ⇒ L1 ∈ P

A problem L is NP-hard iff ∀L′ ∈ NP : L′ ≤P L
A problem L is NP-complete (L ∈ NPC) iff L is NP-hard and L ∈ NP

Theorem
Let L be some NP-complete problem; then P = NP iff L ∈ P

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 10 / 15

NP-COMPLETENESS THEORY IN A NUTSHELL

Are there NP-complete problems at all?
SAT ∈ NPC (Stephen Cook, 1971)

The first is the hard one: need to show that every problem in NP reduces
to our problem
Then in order to find other NP-complete problems all we need to do is to
find problems such that some problem already known to be NP-complete
reduces to them

This works because polynomial reductions are closed under composition =
are transitive

Then it is apparently easy to use the theorem stated earlier:
Let L be some NP-complete problem; then P = NP iff L ∈ P

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 11 / 15

SOME WELL-KNOWN NP-COMPLETE PROBLEMS

SAT

3-SAT

Clique3DMG3C

X3C

Partition into Δ

SI

VC IS

HC Partition

TSP SoS Knapsack

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 12 / 15

SOME NP-COMPLETE PROBLEMS (CONT’D)

3-Dimensional Matching (3DM):
Input: A set M ⊆ W × X × Y where W , X and Y are disjoint sets having the
same number q of elements
Question: Does M contain a matching?
A matching is a subset M ′ ⊆ M such that |M ′| = q and no two elements in
M ′ agree in any position

Vertex Cover (VC):
Input: A Graph G = (V ,E) and an integer k , 0 ≤ k ≤ |V |
Question: Is there a vertex cover of size less than k that is, a subset V ′ ⊆ V ,
|V ′| ≤ k such that for all edges (u, v) ∈ E we have u ∈ V ′ ∨ v ∈ V ′?

Independent Set (IS):
Input: A Graph G = (V ,E) and an integer k , 0 ≤ k ≤ |V |
Question: Does G contain an independent set of size larger than k that is, a
subset V ′ ⊆ V , |V ′| ≥ k such that (u, v) ̸∈ E for all u, v ∈ V ′?

Partition:
Input: A finite set A and a size s(a) ∈ N for each a ∈ A
Question: Is there A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a ̸∈A′ s(a)?

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 13 / 15

SOME NP-COMPLETE PROBLEMS (CONT’D)
Sum of Subsets (SoS):

Input: A finite set A, a size s(a) ∈ N for each a ∈ A, and B ∈ N
Question: Is there A′ ⊆ A such that

∑
a∈A′ s(a) = B?

Graph 3-Colorability (G3C):
Input: A graph G
Question: Is the chromatic number of G less than 3?

Subgraph Isomorphism (SI):
Input: Two graphs G = (V1,E1) and H = (V2,E2)
Question: Does G contain a subgraph isomorphic to H that is, a subgraph
G′ = (V ,E) such that V ⊆ V1, E ⊆ E1, |V | = |V2|, |E | = |E2|, and there is a
one-to-one correspondence between E and E2?

Exact Covering by 3 Sets (X3C):
Input: A finite set X with |X | = 3q and a collection C of 3-element subsets of
X
Does C contain an exact cover for X that is, a subcollection C′ ⊆ C s.t.
|C′| = q and every element in X occurs in exactly one member of C′?

Partition into Triangles:
Input: A Graph G = (V ,E) such that |V | = 3q
Question: Is there a partition of V into q disjoint sets V1, V2, . . . , Vq of 3
vertices each such that for each Vi = vi1, vi2, vi3 we have
{(vi1, vi2), (vi2, vi3), (vi3, vi1)} ⊆ E?

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 14 / 15

HARD TO CLASSIFY PROBLEMS

There are problems that are known to be in neither P nor NPC
Example: the language of composite numbers (aka the integer
factorization problem)

In NP
Its complement also in NP
Suspected outside P
Suspected outside NPC
Its placement outside P crucial to modern cryptography

Introduction to Complexity Theory (S. D. Bruda) CS 317, Fall 2024 15 / 15

