Introduction to the Complexity Theory

Stefan D. Bruda

CS 317, Fall 2025

WE HAVE PROBLEMS

@ When designing algorithms we think about problems individually
@ Nice to know in advance what kind of algorithms we can design
@ Convenient then to consider classes or problems with similar algorithmic

properties
e Focus on decision problems = problems with true/false answers or
positive/negative instances

@ Example of meaningful complexity classes:

e Semi-decidable problems, for which we have algorithms that can provide the

correct answer to positive instances but not to negative instances
@ Includes exactly all specifiable problems

e Decidable problems, for which algorithms exist

e Intractable problems, for which it is proven that no polynomial algorithm exist
(decidability in Presburger arithmetic, position evaluation in Go, etc.)

e Tractable problems, for which polynomial algorithms exist (sorting, shortest
path, optimal BST, etc.)

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 1/15

WE HAVE PROBLEMS

@ When designing algorithms we think about problems individually
@ Nice to know in advance what kind of algorithms we can design
@ Convenient then to consider classes or problems with similar algorithmic
properties
e Focus on decision problems = problems with true/false answers or
positive/negative instances

@ Example of meaningful complexity classes:
e Semi-decidable problems, for which we have algorithms that can provide the
correct answer to positive instances but not to negative instances

@ Includes exactly all specifiable problems
e Decidable problems, for which algorithms exist
e Intractable problems, for which it is proven that no polynomial algorithm exist
(decidability in Presburger arithmetic, position evaluation in Go, etc.)
e Tractable problems, for which polynomial algorithms exist (sorting, shortest
path, optimal BST, etc.)

o Neither here nor there: problems with no known polynomial time algorithms
but not proven to have no such an algorithm

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 1/15

THE HALTING PROBLEM

@ Input: A string P describing an algorithm and a string w as input for P
@ Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 2/15

THE HALTING PROBLEM

@ Input: A string P describing an algorithm and a string w as input for P
@ Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

e Suppose that the problem is decidable and so is solved by HALT(P, w)
o Consider then the following algorithm:
algorithm DIAG(x):
if HALTS(x, x) then
| while TRUE do nothing
else return TRUE
o Does DIAG(DIAG) halt?

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 2/15

THE HALTING PROBLEM

@ Input: A string P describing an algorithm and a string w as input for P
@ Output: TRUE if P halts on w and FALSE if P runs forever on w

Theorem (Alan Mathison Turing, 1939)
The halting problem is undecidable (semi-decidable but not decidable)

e Suppose that the problem is decidable and so is solved by HALT(P, w)
o Consider then the following algorithm:
algorithm DIAG(x):
if HALTS(x, x) then
| while TRUE do nothing
L else return TRUE
o Does DIAG(DIAG) halt?
@ Ifit halts then HALTS(DIAG, DIAG) returns TRUE (since HALTS solves the halting
problem), which means that DIAG(DIAG) does not halt, a contradiction
@ If it does not halt; then HALTS(DIAG, DIAG) returns FALSE (since HALTS solves
the halting problem), which means that DIAG(DIAG) halts and returns TRUE,
another contradiction

Theorem (Henry Gordon Rice, 1951)
All nontrivial and extensional questions about algorithms are undecidable

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 2/15

PROBLEMS REDEFINED

@ Abstract problem: relation Q over the set / of problem instances and the
set S of problem solutions: Q C I x S
o Complexity theory deals with decision problems or languages (S = {0,1})
@ [partitioned into positive and negative problem instances
@ Technically a language is a set of strings
@ Aproblem Q C / x {0, 1} ca be rewritten as the language (set)
LQ)={wel:(w,1)eqQ}
e Many abstract problems are optimization problems instead; however, we can
usually restate an optimization problem as a decision problem which
requires the same amount of resources to solve

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 3/15

PROBLEMS REDEFINED

@ Abstract problem: relation Q over the set / of problem instances and the
set S of problem solutions: Q C I x S
o Complexity theory deals with decision problems or languages (S = {0,1})
@ [partitioned into positive and negative problem instances
@ Technically a language is a set of strings
@ Aproblem Q C / x {0, 1} ca be rewritten as the language (set)
LQ)={wel:(w,1)eQ}

e Many abstract problems are optimization problems instead; however, we can
usually restate an optimization problem as a decision problem which
requires the same amount of resources to solve

@ Concrete problem: an abstract decision problem with / = {0, 1}*

@ Abstract problem mapped on concrete problem using an encoding
e:1—{0,1}*

e Q C/x{0,1} mapped to the concrete problem e(Q) C e(/) x {0,1}

e Encodings will not affect the performance of an algorithm as long as they are
polynomially related

@ An algorithm solves a concrete problem in time O(T(n)) whenever the
algorithm produces in O(T(n)) time a solution for any problem instance /
with |i] = n

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 3/15

LANGUAGES? PROBLEMS?

@ Complexity theory analyzes problems from the perspective of how many
resources (e.g., time, storage) are necessary to solve them
o Given some abstract problem that requires certain resource (time) bounds to
solve, it is generally easy to find a language that requires the same resource
bounds to decide
o Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 4/15

LANGUAGES? PROBLEMS?

@ Complexity theory analyzes problems from the perspective of how many
resources (e.g., time, storage) are necessary to solve them
o Given some abstract problem that requires certain resource (time) bounds to
solve, it is generally easy to find a language that requires the same resource
bounds to decide
o Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem
@ Traveling salesman (TSP): Given n > 2, a matrix (dj)1<jj<n With dj > 0
and d; = 0, find a permutation = of {1,2,..., n} such that ¢(x), the cost
of 7 is minimal, where ¢(7) = dryny + Grpres + - + Ay iy + Oy
e TSP the language (take 1): {((dj)1<ij<n, B) : n > 2, B > 0, there exists a
permutation = such that ¢(7) < B}
o TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 4/15

LANGUAGES? PROBLEMS? (CONT’'D)

@ Clique: Given an undirected graph G = (V, E), find the maximal set
C C VsuchthatVv;,vie C: (v, V) € E(Cisaclique of G)
o Clique, the language: {(G = (V, E),K) : K > 2 : there exists a clique C of V
such that |C| > K}

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 5/15

LANGUAGES? PROBLEMS? (CONT’'D)

@ Clique: Given an undirected graph G = (V, E), find the maximal set
C C VsuchthatVv;,vie C: (v, V) € E(Cisaclique of G)

Clique, the language: {(G = (V, E),K) : K > 2 : there exists a clique C of V
such that |C| > K}

@ SAT: Fix a set of variables X = {xq, X2, ..., Xp} and let

7:

{X_h X_2’ A 7X_n}

An element of X U X is called a literal

A formula (or set/conjunction of clauses) is a1 A az A -+ - A am Where
Q= Xa; V Xay V-V Xa, 1 < i< m,and xa, € XUX

An interpretation (or truth assignment) is a function /: X — {T, L}

A formula F is satisfiable iff there exists an interpretation under which F
evaluatesto T.

SAT = {F : F is satisfiable }

@ 2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 5/15

LANGUAGES? PROBLEMS? (CONT’'D)

@ Clique: Given an undirected graph G = (V, E), find the maximal set
C C VsuchthatVv;,vie C: (v, V) € E(Cisaclique of G)
o Clique, the language: {(G = (V, E),K) : K > 2 : there exists a clique C of V
such that |C| > K}
@ SAT: Fix a set of variables X = {xq, X2, ..., Xp} and let
X = {X1,%, ..., Xn}
e An element of X U X is called a literal
o A formula (or set/conjunction of clauses) is a1 A ag A - -+ A aem Where
Q= Xa; V Xay V-V Xa, 1 < i< m,and xa, € XUX
o An interpretation (or truth assignment) is a function /: X — {T, L}
o Aformula F is satisfiable iff there exists an interpretation under which F
evaluatesto T.
o SAT = {F : F is satisfiable }
@ 2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)

@ Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF,
3-CNF) because the input formulae are written in conjunctive normal form

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 5/15

NONDETERMINISTIC ALGORITHMS

@ A nondeterministic algorithm is an algorithm that can be in more places
at once while deciding a problem

@ Sole additional operation is the nondeterministic guess of a bit: GUESS
returns 0 and 1 at the same time
After a guess the algorithm continues in parallel for both cases 0 and 1
The algorithm returns TRUE iff at least one of the parallel paths return TRUE
Running time: the running time of the longest parallel path
Example:

algorithm ISCOMPOSITE(k):
f1 «— 1
f2 «—1
fori=1tologkdo f; + 2 x f; + GUESS
fori=1tologkdo f, + 2 x fo + GUESS
return k =f; x b
@ Running time: O(n + tx (n)), with tx (n) the time it takes to multiply n-bit
numbers
@ Correctness: f; and f, range over all log k-bit numbers = all possible factors of n
o If f; x f, is never equal to n then all paths return FALSE (so ISCOMPOSITE
returns FALSE), otherwise at least one path returns TRUE (so ISCOMPOSITE
returns TRUE)

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 6/15

NONDETERMINISTIC ALGORITHMS (CONT’D)

A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2"(") time

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 7/15

NONDETERMINISTIC ALGORITHMS (CONT’D)

A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2"(") time

@ After a guess follow the two paths sequentially, one after the other
@ The running time doubles after each guess

@ In the worst case every step is a guess, hence the O(2(") overall
running time

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 7/15

NONDETERMINISTIC ALGORITHMS (CONT’D)

A nondeterministic algorithm with r(n) running time can be simulated by a
(deterministic) algorithm in O(2"(") time

@ After a guess follow the two paths sequentially, one after the other
@ The running time doubles after each guess

@ In the worst case every step is a guess, hence the O(2(") overall
running time

@ Alternatively, think about the running paths of a deterministic algorithm as
a sequence of states
e The length of the sequence is the running time
@ By contrast the running time of a nondeterministic algorithm branches at
each guess forming a binary tree

@ The running time is the height of the tree
o A deterministic algorithm has to traverse the whole tree

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 7/15

A FEW COMPLEXITY CLASSES

@ P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = n°") time

@ N'P: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time

@ £X'P: The class of exactly all problems solved by (deterministic)
algorithms running in 2" time

PCNPCEXP I

@ True or false: P = NP

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 8/15

A FEW COMPLEXITY CLASSES

@ P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = n°") time

@ N'P: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time

@ £X'P: The class of exactly all problems solved by (deterministic)
algorithms running in 2" time

PCNPCEXP I

@ True or false: P = NP — open question (since 1971, arguably earlier)
@ Algorithms for problems in A/P consist of a nondeterministic guessing
step followed by a deterministic verification step
o Cligue: nondeterministically guess a set of vertices, then verify that the
guessed set is a clique
e Hamiltonian cycle: guess a permutation of vertices, then verify that the
guessed permutation forms a cycle

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 8/15

A FEW COMPLEXITY CLASSES

@ P: The class of exactly all problems solved by (deterministic) algorithms
running in poly(n) = n°") time

@ N'P: The class of exactly all problems solved by nondeterministic
algorithms running poly(n) time

@ £X'P: The class of exactly all problems solved by (deterministic)
algorithms running in 2" time

PCNPCEXP I

@ True or false: P = NP — open question (since 1971, arguably earlier)
@ Algorithms for problems in A/P consist of a nondeterministic guessing
step followed by a deterministic verification step
o Cligue: nondeterministically guess a set of vertices, then verify that the
guessed set is a clique
e Hamiltonian cycle: guess a permutation of vertices, then verify that the
guessed permutation forms a cycle
@ Alternative definition for NP: A problem Q C | x {0,1} is in AP iff the
following problem is in P: Given w € [, determine whether (w,1) € Q
o The problem becomes easy if we take the guess out

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 8/15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p, w, K):
/I guess a set of objects
O« 0
fori=1to ndo
| if GUEss = 1then O+« OU{i}

// calculate the weight and profit
W+ 0
P+ 0
foreach i € O do
W<« W+ w
P+ P+pi

return W< CAP>K

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 9/15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p, w, K):

Introduction to the Complexity Theory (S. D. Bruda)

/I guess a set of objects
O« 0
fori=1to ndo
| if GUEss = 1then O+« OU{i}

// calculate the weight and profit
W+ 0
P+ 0
foreach i € O do
W<« W+ w
P+ P+pi

return W< CAP>K

algorithm CLIQUE(G = (V, E), K):

/I guess a set of vertices
C+ 0
foreach v € V do

| ifGUESs =1then C+«+ CU{v}

// check if C is a clique
foreach u € C do
foreach v € C do
L if u# vA(uv)¢E then
L return FALSE

| return|C| > K

CS 317, Fall 2025

9/15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p, w, K): algorithm GUESSNUMBER(n):
/I guess a set of objects k<« 0
O« 0 fori=1tologndo
fori=1tondo L k<« 2x k+ GUESS
| if GUEss = 1then O+« OU{i} return k
// calculate the weight and profit
W+ 0
P+ 0
foreach i € O do
W<« W+ w
P+ P+p;

L return W< CAP>K
algorithm CLIQUE(G = (V, E), K):
/I guess a set of vertices
C+ 0
foreach v € V do
| ifGUESs =1then C+«+ CU{v}

// check if C is a clique
foreach u € C do
foreach v € C do
L if u# vA(uv)¢E then
L return FALSE

| return|C| > K

Introduction to the Complexity Theory (S. D. Bruda)

CS 317, Fall 2025

9/15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p, w, K):
/I guess a set of objects
O« 0
fori=1to ndo
| if GUEss = 1then O+« OU{i}

// calculate the weight and profit
W+ 0
P+ 0
foreach i € O do
W<« W+ w
P+ P+pi

L return W< CAP>K
algorithm CLIQUE(G = (V, E), K):
/I guess a set of vertices
C+ 0
foreach v € V do
| ifGUESs =1then C+«+ CU{v}

// check if C is a clique
foreach u € C do
foreach v € C do
L if u# vA(uv)¢E then
L return FALSE

| return|C| > K

Introduction to the Complexity Theory (S. D. Bruda)

algorithm GUESSNUMBER(n):
k<« 0
fori =1tologndo

L k<« 2x k+ GUESs

L return k

Igorithm TSP(d1. . .p,1...n, K):
/I guess n numbers
<+ {)
fori=1tondo
| 7« 7+ (GUESSNUMBER(n))

// verify that 7 is a permutation
fori=1tondo
L forj=1tondo

(%)

| if m; = 7; then return FALSE

/[calculate the cost of cycle &

c+0

fori=1tondo
| €+ C4dnn

returnc < K

i+1) mod n

CS 317, Fall 2025

9/15

EXAMPLES OF NONDETERMINISTIC ALGORITHMS

algorithm KNAPSACK(C, n, p, w, K):
/I guess a set of objects
O« 0
fori=1to ndo
| if GUEss = 1then O+« OU{i}

// calculate the weight and profit
W+ 0
P+ 0
foreach i € O do
W<« W+ w
P+ P+pi

L return W< CAP>K

algorithm CLIQUE(G = (V, E), K):
/I guess a set of vertices
C+ 0
foreach v € V do
| ifGUESs =1then C+«+ CU{v}

// check if C is a clique
foreach u € C do
foreach v € C do
L if u# vA(uv)¢E then
L return FALSE

| return|C| > K

Introduction to the Complexity Theory (S. D. Bruda)

algorithm GUESSNUMBER(n):
k<« 0
fori =1tologndo

L k<« 2x k+ GUESs

L return k

Igorithm TSP(d1. . n,1...n, K):
/I guess n numbers
<+ {)
fori=1tondo
| 7« 7+ (GUESSNUMBER(n))

// verify that 7 is a permutation
fori=1tondo
forj=1tondo
L if 7; = m; then return FALSE

(%)

/[calculate the cost of cycle &

c+0

fori=1tondo
| ¢+ c+dn,

T(i+1) mod n

L returnc < K

@ All the “brute force” solutions discussed
earlier are effectively polynomial time
nondeterministic algorithms!

CS 317, Fall 2025

9/15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

@ A problem Q can be reduced to another problem Q' if any instance of Q
can be “easily rephrased” as an instance of Q’/
o If Qreduces to Q' then Q is “not harder to solve” than Q'

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 10/15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

@ A problem Q can be reduced to another problem Q' if any instance of Q
can be “easily rephrased” as an instance of Q’/

e If Qreduces to Q' then Q is “not harder to solve” than Q'

@ Polynomial reduction: A language L, is polynomial-time reducible to a
language L, (L <p Lp) iff there exists a polynomial algorithm F that
computes the function f: {0,1}* — {0,1}* such that

vVxe{0,1}*: xeLyiff f(x) € Lp
e Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall2025 10/15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

@ A problem Q can be reduced to another problem Q' if any instance of Q
can be “easily rephrased” as an instance of Q’/

e If Qreduces to Q' then Q is “not harder to solve” than Q'

@ Polynomial reduction: A language L, is polynomial-time reducible to a
language L, (L <p Lp) iff there exists a polynomial algorithm F that
computes the function f: {0,1}* — {0,1}* such that

vVxe{0,1}*: xeLyiff f(x) € Lp
e Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

@ <p is apreorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
e L4 SPLQ/\LZEP=>L1 eP

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 10/15

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

@ A problem Q can be reduced to another problem Q' if any instance of Q
can be “easily rephrased” as an instance of Q’/

e If Qreduces to Q' then Q is “not harder to solve” than Q'

@ Polynomial reduction: A language L, is polynomial-time reducible to a
language L, (L <p Lp) iff there exists a polynomial algorithm F that
computes the function f: {0,1}* — {0,1}* such that

vVxe{0,1}*: xeLyiff f(x) € Lp
e Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

@ <p is apreorder (reflexive and transitive but not necessarily symmetric or antisymmetric)
e L4 SPLQ/\LZEP=>L1 eP

@ Aproblem Lis NP-hard iff VL' e NP: L' <p L
@ A problem L is NP-complete (L € N'PC) iff L is NP-hard and L € N'P

Let L be some NP-complete problem; then P = NP iffL € P I

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 10/15

NP-COMPLETENESS THEORY IN A NUTSHELL

@ Are there NP-complete problems at all?
o SAT € N'PC (Stephen Cook, 1971)
@ The first is the hard one: need to show that every problem in NP reduces
to our problem

@ Then in order to find other NP-complete problems all we need to do is to
find problems such that some problem already known to be NP-complete
reduces to them

@ This works because polynomial reductions are closed under composition =
are transitive

@ Then it is apparently easy to use the theorem stated earlier:
Let L be some NP-complete problem; then P = NP iff L € P

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall2025 11/15

SOME WELL-KNOWN NP-COMPLETE PROBLEMS

SAT

VC IS
7/ N
/ N
v X
HC Partition
Partition into A TSP SoS Knapsack

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 12/15

SOME NP-COMPLETE PROBLEMS (CONT'D)

@ 3-Dimensional Matching (3DM):
o Input: Aset M C W x X x Y where W, X and Y are disjoint sets having the
same number q of elements
@ Question: Does M contain a matching?
o A matching is a subset M’ C M such that [M’| = g and no two elements in
M’ agree in any position
@ Vertex Cover (VC):
@ Input: A Graph G = (V,E) and aninteger k, 0 < k < | V|
@ Question: Is there a vertex cover of size less than k that is, a subset V' C V,
|V'| < k such that for all edges (u,v) € Ewe have ue V' vve V'?
@ Independent Set (IS):
o Input: A Graph G = (V, E) and an integer k, 0 < k < |V|
@ Question: Does G contain an independent set of size larger than k that is, a
subset V' C V, |V'| > k such that (u,v) € Eforallu,v € V'?
@ Partition:
o Input: A finite set Aand a size s(a) e Nforeachac A
o Question: Is there A” C Asuchthat >°,_, s(a) = 3" .. S(a)?

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall2025 13/15

SOME NP-COMPLETE PROBLEMS (CONT'D)

@ Sum of Subsets (SoS):
o Input: A finite set A, a size s(a) e Nforeachac A,and Be N
® Question: Is there A" C Asuchthat}_,_, s(a) = B?
@ Graph 3-Colorability (G3C):
o Input: A graph G
@ Question: Is the chromatic number of G less than 3?7
@ Subgraph Isomorphism (Sl):
o Input: Two graphs G = (V4, Ey) and H = (Vz, E»)
@ Question: Does G contain a subgraph isomorphic to H that is, a subgraph
G = (V,E)suchthat V C Vi, E C Eq, |V| = |Vz|, |E| = |Ez|, and there is a
one-to-one correspondence between E and E,?
@ Exact Covering by 3 Sets (X3C):
o Input: A finite set X with | X| = 3g and a collection C of 3-element subsets of
X
o Does C contain an exact cover for X that is, a subcollection C’' C C s.t.
|C’| = g and every element in X occurs in exactly one member of C'?
@ Partition into Triangles:
o Input: A Graph G = (V, E) such that |V| = 3q
@ Question: Is there a partition of V into q disjoint sets V4, Vs, ..., V4 0f 3
vertices each such that for each V; = vj1, vj2, vi3 we have
{(vi1, Vi2), (Vi2, Via), (i, Vin)} C E?

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall2025 14/15

HARD TO CLASSIFY PROBLEMS

@ There are problems that are known to be in neither P nor A"PC

@ Example: the language of composite numbers (aka the integer
factorization problem)
o InNP
Its complement also in NP
Suspected outside P
Suspected outside N'PC
Its placement outside P crucial to modern cryptography

Introduction to the Complexity Theory (S. D. Bruda) CS 317, Fall 2025 15/15

