
CS 317, Assignment 1

Answers

1. Consider the following algorithm which receives as input an array 𝐴 of size 𝑛:

𝑖 ← 1

while 𝑖 ≤ 𝑛 do

𝑠𝑢𝑚𝑖 ← 0

𝑝𝑟𝑜𝑑𝑖 ← 1

for 𝑗 = 1 to 𝑛 do

𝑠𝑢𝑚𝑖 ← 𝑠𝑢𝑚𝑖 + 𝐴 𝑗

for 𝑗 = 1 to 𝑛 do

𝑝𝑟𝑜𝑑𝑖 ← 𝑝𝑟𝑜𝑑𝑖 + 𝐴 𝑗

𝑖 ← 𝑖 + 1

• State how many times each loop is executed and justify your answer.

• Give the running time of the algorithm in Θ notation. Explain how you reached the

answer.

Answer:

The while loop executes 𝑛 times since 𝑖 starts at 1, is incremented at each step, and the loop

keeps iterating as long as 𝑖 ≤ 𝑛 (that is the loop condition). Both of the inner for loops iterates

exactly 𝑛 times; that is how for loop work.

For the running time, let’s take assignment as the operation to be counted. Then the body of

the while loop features 3 assignments and the two for loops. Each for loop takes time 𝑛 as

argued above, for an overall running time of 3+ 𝑛. The while loop in turn iterates 𝑛 times as

explained above, for an overall running time of 𝑛(𝑛 + 3) = 𝑛2 + 3𝑛 = Θ(𝑛2).

2. Consider the following algorithm which receives as input two numbers 𝑚 and 𝑛 and sets

𝑟𝑒𝑠𝑢𝑙𝑡 to 𝑚 × 𝑛; div is the integer division operator.

𝑟𝑒𝑠𝑢𝑙𝑡 ← 0

repeat

if 𝑚 is odd then

𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑛
𝑚 ← 𝑚 div 2

𝑛 ← 𝑛 + 𝑛
until 𝑚 < 1:



• State (as a function of 𝑚 and 𝑛) how many times the loop is executed and justify your

answer.

• Give the running time of the algorithm in Θ notation as a function of 𝑚 and 𝑛. Explain

how you reached the answer.

Answer:

Let 𝑚𝑘 be the value of 𝑚 at the end of iteration 𝑘 of the loop, with 𝑚0 = 𝑚 the value

before the loop starts executing. Given the assignment to 𝑚 inside the loop we have 𝑚𝑘 =

𝑚𝑘−1/2 = (𝑚𝑘−2/2)/2 = ((𝑚𝑘−3/2)/2)/2 = · · · . We hypothesize that 𝑚𝑘 = 𝑚𝑘−𝑖/2𝑖 and so

𝑚𝑘 = 𝑚𝑘−𝑘/2𝑘 = 𝑚0/2𝑘 = 𝑚/2𝑘
. We verify this by induction over 𝑘 as follows

1
: For 𝑘 = 0

we have 𝑚0 = 𝑚/20 = 𝑚/1 = 𝑚, as desired. Now 𝑚𝑘+1 = 𝑚𝑘/2 and 𝑚𝑘 = 𝑚/2𝑘
by inductive

hypothesis. Therefore 𝑚𝑘+1 = 𝑚/2𝑘/2 = 𝑚/2𝑘+1
, again as desired.

Now the loop iterates as long as 𝑚𝑘 ≥ 1 that is, 𝑚/2𝑘 ≥ 1 that is, 𝑚 ≥ 2
𝑘

or equivalently

𝑘 ≤ log𝑚. It follows that the loop iterates log𝑚 times.

How many operations do we have inside the loop? We have either 3 or 2 of those, depending

on the actual value of the input 𝑚. Clearly we can choose an 𝑚 such that we always perform

3 operations per loop and so the worst-case running time is 3 log𝑚 = Θ(log𝑚). Actually, in

the best case (when 𝑚 = 2
𝑘

for some positive 𝑘) the running time would be 2 log𝑚 which is

still Θ(log𝑚) just like in the worst case.

Note in passing that the running time does not depend on 𝑛, but only in 𝑚.

3. Prove each of the following statements without using limits. Justify your answer.

(a) 3𝑛3 + 2𝑛2 + 𝑛 ∈ Ω(𝑛2)

Answer:

We need to show that 3𝑛3 + 2𝑛2 + 𝑛 ≥ 𝑐𝑛2
for some constant 𝑐 and large enough 𝑛. If

we choose 𝑐 = 2 the relation becomes 3𝑛3 + 𝑛 ≥ 0 which is clearly true for any 𝑛 ≥ 0.

(b) 2
𝑛 ∈ Θ(2𝑛−2)

Answer:

We need to show that 2
(𝑛−1) ∈ 𝑂(2𝑛−2) and also 2

(𝑛−1) ∈ Ω(2𝑛−2).
To show that 2

𝑛 ∈ 𝑂(2𝑛−2) we need to find a constant 𝑐 such that 2
𝑛 ≤ 𝑐2𝑛−2

for large

enough 𝑛. For 𝑐 = 4 the relation becomes 2
𝑛 ≤ 2

𝑛
, clearly true for any 𝑛 ≥ 0.

1
By now we all know that a quantity that halves at every iteration produces a logarithmic number of iterations, but

in such a first assignment this has to be proven for the record.

2



To show that 2
𝑛 ∈ Ω(2𝑛−2) we need to find a constant 𝑐 such that 2

𝑛 ≥ 𝑐2𝑛−2
for large

enough 𝑛. Once more 𝑐 = 4 works well since the relation becomes 2
𝑛 ≥ 2

𝑛
, clearly true

for any 𝑛 ≥ 0.

(c) (log 𝑛2) ∈ 𝑜(log 𝑛)2

Answer:

We need to show that log 𝑛2 ≤ 𝑐(log 𝑛)2 for any 𝑐 and large enough 𝑛. This is equivalent

to log 𝑛 + log 𝑛 ≤ 𝑐(log 𝑛) × (log 𝑛) that is, 2 ≤ 𝑐(log 𝑛), that is, log 𝑛 ≥ 2/𝑐 or 𝑛 ≥ 2
2/𝑐

.

This means that no matter what constant 𝑐 we choose there is always a threshold 𝑁

(namely, 𝑁 = 2
2/𝑐

) such that the relation is true for any 𝑛 ≥ 𝑁 .

(d) 2
(𝑛+1) ∈ 𝑂(4𝑛)

Answer:

We need to show that 2
(𝑛+1) ≤ 𝑐4𝑛 for some constant 𝑐 and any large enough 𝑛. This

is equivalent to 2
𝑛+1 ≤ 𝑐22𝑛

. We can choose 𝑐 = 1, case in which the relation is true for

any 𝑛 ≥ 1 (since 2𝑛 ≥ 𝑛 + 1 for any such an 𝑛).

(e) 2
2𝑛 ∉ Θ(2𝑛)

Answer:

It must be the case that either 2
2𝑛 ∉ 𝑂(2𝑛) or 2

2𝑛 ∉ Ω(2𝑛). We can try both, but we can

also notice that 2
2𝑛

seems to grow faster than 2
𝑛

(since the exponent is twice as large)

so we suspect that 2
2𝑛 ∉ 𝑂(2𝑛). We will try to prove this by contradiction:

Assume that 2
2𝑛 ∈ 𝑂(2𝑛) and so 2

2𝑛 ≤ 𝑐2𝑛 for some constant 𝑐 and large enough 𝑛. This

is equivalent with 2
𝑛 ≤ 𝑐 or 𝑛 ≤ log 𝑐. No matter what constant 𝑐 we choose, there will

be a threshold for 𝑛 (namely, log 𝑐) over which the relation becomes false. That is, the

relation cannot be true for arbitrarily large 𝑛, a contradiction.

4. For each relation below find all the X ∈ {𝑂,Ω,Θ, 𝑜, 𝜔} that make the relation true. Justify

your answer using limits.

(a) 3𝑛3 + 2𝑛2 + 𝑛 ∈ X(𝑛3)

Answer:

lim𝑛→∞ 𝑛3+2𝑛2+𝑛
𝑛3

= lim𝑛→∞
(
𝑛3

𝑛3
+ 2𝑛2

𝑛3
+ 𝑛

𝑛3

)
= lim𝑛→∞

(
1 + 2

𝑛 + 1

𝑛2

)
= 1 + 0 + 0 = 1.

Therefore 3𝑛3 + 2𝑛2 + 𝑛 ∈ Θ(𝑛3) and so 3𝑛3 + 2𝑛2 + 𝑛 ∈ 𝑂(𝑛3) and also 3𝑛3 + 2𝑛2 + 𝑛 ∈
Ω(𝑛3).

3



(b) (𝑛 log 𝑛)2 ∈ X(𝑛2
log 𝑛2)

Answer:

lim𝑛→∞
(𝑛 log 𝑛)2
𝑛2

log 𝑛2
= lim𝑛→∞

𝑛2(log 𝑛)2
𝑛2

2 log 𝑛
= lim𝑛→∞

log 𝑛

2
= ∞. Therefore (𝑛 log 𝑛)2 ∈

𝜔(𝑛2
log 𝑛2) and so it is also the case that (𝑛 log 𝑛)2 ∈ Ω(𝑛2

log 𝑛2).

(c) 𝑛2 + 2
𝑛 ∈ X(𝑛2

𝑛)

Answer:

lim𝑛→∞ 𝑛2+2
𝑛

𝑛2
𝑛 = lim𝑛→∞

(
𝑛2

𝑛2
𝑛 + 2

𝑛

𝑛2
𝑛

)
= lim𝑛→∞

(
𝑛
2
𝑛 + 1

𝑛

)
= lim𝑛→∞ 𝑛

2
𝑛 + 0 = lim𝑛→∞ 𝑛

2
𝑛 =

lim𝑛→∞ 𝑛′
(2𝑛)′ = lim𝑛→∞ 1

2
𝑛

ln 𝑛 = 0. It follows that 𝑛2 + 2
𝑛 ∈ 𝑜(𝑛2

𝑛) and therefore it is also

the case that 𝑛2 + 2
𝑛 ∈ 𝑂(𝑛2

𝑛).

(d) (𝑛 − 1)! ∈ X(𝑛!)

Answer:

lim𝑛→∞
(𝑛−1)!
𝑛!

= lim𝑛→∞ 1

𝑛 = 0 (I used the fact that 𝑛! = (𝑛−1)!×𝑛, well known from the

recursive implementation of the factorial function). That is, somehow counterintuitively

(𝑛 − 1)! ∈ 𝑜(𝑛!) (and so (𝑛 − 1)! ∈ 𝑂(𝑛!)). The factorial function grows so fast that it kind

of grows faster than itself!

(e) 𝑛 log 𝑛 ∈ X(
√
𝑛)

Answer:

lim𝑛→∞
𝑛 log 𝑛√

𝑛
= lim𝑛→∞

√
𝑛

2

log 𝑛√
𝑛

= lim𝑛→∞
√
𝑛 log 𝑛 = ∞. That is, 𝑛 log 𝑛 ∈ 𝜔(

√
𝑛) and

so 𝑛 log 𝑛 ∈ Ω(
√
𝑛).

4


