CS 317, Assignment 1

Due on 24 September in class

1. Consider the following algorithm which receives as input an array *A* of size *n*:

```
i \leftarrow 1

while i \le n do

sum_i \leftarrow 0

prod_i \leftarrow 1

for j = 1 To n do

sum_i \leftarrow sum_i + A_j

for j = 1 To n do

prod_i \leftarrow prod_i + A_j

i \leftarrow i + 1
```

- State how many times each loop is executed and justify your answer.
- ullet Give the running time of the algorithm in Θ notation. Explain how you reached the answer.
- 2. Consider the following algorithm which receives as input two numbers m and n and sets result to $m \times n$; div is the integer division operator.

```
result \leftarrow 0

repeat

if m is odd then

\perp result \leftarrow result + n

m \leftarrow m \text{ div } 2

n \leftarrow n + n

until m < 1:
```

- State (as a function of *m* and *n*) how many times the loop is executed and justify your answer.
- Give the running time of the algorithm in Θ notation as a function of m and n. Explain how you reached the answer.
- 3. Prove each of the following statements without using limits. Justify your answer.

```
(a) 3n^3 + 2n^2 + n \in \Omega(n^2)

(b) 2^n \in \Theta(2^{n-2})

(c) (\log n^2) \in o(\log n)^2

(d) 2^{(n+1)} \in O(4^n)
```

(e)
$$2^{2n} \notin \Theta(2^n)$$

4. For each relation below find *all* the $\mathbb{X} \in \{O, \Omega, \Theta, o, \omega\}$ that make the relation true. Justify your answer *using limits*.

(a)
$$3n^3 + 2n^2 + n \in \mathbb{X}(n^3)$$

(b)
$$(n \log n)^2 \in \mathbb{X}(n^2 \log n^2)$$

(c)
$$n^2 + 2^n \in \mathbb{X}(n2^n)$$

(d)
$$(n-1)! \in X(n!)$$

(e)
$$n \log n \in \mathbb{X}(\sqrt{n})$$

Make sure you review the submission guidelines posted on the course's Web site before submitting.