
CS 317, Assignment 2

Answers

1. Consider the following algorithms:

algorithm DoSomething(�, <, =):
if = − < = 0 then

return

else

for 8 = < to = do
�8, 9 ← � 9,8

for 9 = < to = do
�8, 9 ← �8, 9 + 8 + 9

DoSomething(�, < + 1, =)

algorithm DoSomethingElse(�, <, =):
if = − < = 0 then

return

else

for 8 = < to = do
�8, 9 ← � 9,8 + 8

? ← (= − <)/3
DoSomethingElse(�, <, < + ?)
DoSomethingElse(�, <+?+1, <+2?)
DoSomethingElse(�, < + 2? + 1, =)

(a) Write down the recurrence relation for the time complexity of each algorithm. Justify
your answer fully.

Answer:

Let : = = − < be the input size.

DoSomething does not do anything for : = 0 so we have )(0) = 0. For the inductive
formula we note that both the outer and the inner for loop iterate : times for an overall
time of Θ(:2). The input size for the recursive call is one less than the original input
size (since < is incremented and = stays the same), so said recursive call takes )(: − 1)
time. In all )(:) = )(: − 1) + :2.

In DoSomethingElse the for loop iterates : times and the input for each recursive call
is one third of the original input : so each of those recursive calls take )(:/3) time (and
note that we have three such calls). Therefore )(:) = 3)(:/3) + :. The base case does
not do anything so we have once more )(0) = 0.

(b) Solve the two recurrence relations you just developed using the characteristic equation
technique and thus give the running time of each algorithm in Θ notation. Note that I
am only asking for the complexity and so you do not need to worry about constants.

Answer:

We have )(:) −)(: − 1) = :2, so the characteristic equation for the homogeneous part is
A − 1 = 0 and so A1 = 1. For the non-homogeneous part we have (A − 1)3 = 0 (1 = 1 and



3 = 2) and so A2 = A3 = A4 = 1. We end up with a single solution A = 1 with multiplicity
4. Therefore )(=) = 211: + 22:1: + 23:

21: + 24:
31: = 21 + 22: + 23:

2 + 24:
3 = Θ(:3).

For the next recurrence namely, )(:) = 3)(3/:) + :, )(0) = 0 we change the variable by
putting : = 3@ and so @ = log3 :. With 1@ = )(3@) we have 1@ − 31@−1 = 3@ . For the
homogeneous part the characteristic equation is A − 3 = 0 and so A1 = 3. For the non-
homogeneous part we have (A − 3)1 = 0 and so A2 = 3. It turns out that we have a single
solution (A = 3) with multiplicity 2 and so 1@ = 213@ + 22@3@ = 3@(21 + 22@) = Θ(3@@).

That is, )(:) = Θ(3log3 : log3 :) = Θ(: log3 :) = Θ(: log :).

2. Consider a recursive version of insertion sort that goes like this: To sort a list of size =, sort the
last = − 1 elements recursively, then deal with the first element.

(a) Write down the algorithm.

Answer:

algorithm ISort((, ;, ℎ):
if ; < ℎ then

ISort((, ; + 1, ℎ)
9 ← ;
while 9 < ℎ ∧ ( 9 > ( 9+1 do

( 9 ↔ ( 9+1

9 ← 9 + 1

To show that ISort indeed sorts (;...ℎ we proceed by structural induction.

In the base case ; = ℎ the sequence contains a single value and so it is trivially sorted.
ISort therefore does not need to do anything, which is indeed the case.

We now assume by induction hypothesis that (;+1...ℎ is sorted after the call ISort((, ;+1,
ℎ). Then the invariant at the end of the iteration of the while loop is: ( 9 is larger than
all the values (;... 9−1, which are all sorted. This is easily proven by induction over 9. The
base case is trivially true, as there are no values (;... 9−1. If ( 9 ≤ ( 9+1 then ( 9+1 is larger
than ( 9 which is in turn larger than all the values (;... 9−1 by induction hypothesis. Since
comparison is transitive it follows that ( 9+1 is larger than all the values in (;... 9; since
(;... 9 is sorted and ( 9 ≤ ( 9+1 then the sequence (;...9+1 remains sorted. If on the other
hand ( 9 > ( 9+1 then these two values are swapped, and once this is done we have it the
other way around that is, ( 9 ≤ ( 9+1. We end up with the same case as above and so ( 9+1

is once more larger than all the values in (;...9 and again the sequence (;... 9+1 is sorted.

The invariant implies that the sequence (;...ℎ is sorted at the end of the loop as follows:
At the end of the loop (1... 9 is sorted (invariant), ( 9 ≤ ( 9+1 (negated while condition),
and ( 9+1...ℎ is sorted (by the structural induction hypothesis, noting that if a sequence is
sorted then so are all its sub-sequences). Therefore the whole sequence (;...ℎ is sorted.

(b) Write down the recurrence relation for the running time of your algorithm.
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Answer:

Obviously the input size is = = ℎ − ;. Clearly )(0) = 0 (nothing is done when = = 0).
Otherwise we perform a recursive call on input size = − 1 (the original sequence less
the first element) and then the while loop. Clearly in the worst case the loop iterates =
time; indeed, this will be the case when ( 9 > ( 9+1 is always true case in which the loop
terminates only when 9 = ℎ. That is, )(=) = )(= − 1) + =.

(c) Solve the recurrence relation with full details and thus give the running time of your
algorithm in Θ notation.

Answer:

This is very similar to the first recurrence we solved for Question 1, so we could copy
and paste the solution from there with very minor changes. Just for kicks I am going to
solve it differently though, using a summing factors guess. We have:

)(=) = )(= − 1) + =
)(= − 1) = )(= − 2) + (= − 1)
)(= − 2) = )(= − 3) + (= − 2)

...
)(= − 8) = )(= − 8 − 1) + (= − 8)

...
)(0) = 0

)(=) = = + (= − 1) + (= − 2) + · · · + (= − 8) + · · · + 0

That is,)(=) =
∑=

8=0 8 and so)(=) = =(=+1)/2 = Θ(=2). This being a (however educated)
guess we need to verify this result against the original recurrence and I will do so by
induction over =: For the base case )(0) = 0 × 1/2 = 0. For the inductive step we note
that )(=) = )(= − 1) + = and )(= − 1) = (= − 1)=/2 by inductive hypothesis. Therefore
)(=) = (= − 1)=/2 + = = (=/2)((= − 1) + 2) = =(= + 1)/2, as desired.

3. Design an algorithm that received a binary tree and returns true iff that tree is a binary search
tree. Establish the correctness and analyze the running time of your algorithm.

Answer:

Note in passing that beside being a question about trees, this is also a typical problem
suitable for a divide and conquer approach (like most problems over trees).

It is very tempting to answer this question using the following algorithm (or similar):
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algorithm DeceptiveCheckBST()):
if Empty()) then return True

A ← True

if ¬Empty(Left())) then A ← Key(Left())) ≤ Key())
if ¬Empty(Right())) then A ← A ∧Key(Right())) ≤ Key())
return A ∧ DeceptiveCheckBST(Left())) ∧DeceptiveCheckBST(Right()))

However, this is also incorrect. Indeed, each recursive call checks the root of the respective
tree only against the roots of its children, whereas the definition establishes a relationship
between the root and all the values in the children (not just their roots). Concretely, Decep-

tiveCheckBST incorrectly returns True on the following (non-binary search) tree:

7

6 9

8

The only solution to this question I can think of is to traverse the tree in inorder and check
that the obtained list is sorted:

algorithm CheckBST()):
= ← 0
(← 〈〉
Inorder())
for 8 = 1 to = − 1 do

if (8 > (8+1 then return False

return True

algorithm Inorder()):
if ¬Empty()) then

Inorder(Left()))
= ← = + 1
(= ← Key())
Inorder(Right()))

The for loop in CheckBST is a simple check that (1...= is sorted and so I am not going to
bother to prove it correct (too basic). This combined with the fact that an inorder traversal of
a binary search tree yields a sorted sequence establishes the correctness of CheckBST. This
should be common knowledge (from CS 304), but let me prove that anyway for the record.

I am going to prove by structural induction that Inorder()) constructs an array (8...8+= that
(0) contains all the values in ) and (1) is sorted in increasing order iff ) is a binary search
tree.

For the base case the sequence returned by Inorder is empty, which is clearly sorted (which
is correct since an empty tree is always a binary search tree) and contains exactly all the
(nonexistent) values in ).

For the inductive step the array constructed by Inorder()) looks like this: (1...=′ is constructed
by Inorder(Left())), (=′+1 = Key()), and (=′+1...= is constructed by Inorder(Right())). Now
(1...=′ and (=′+1...= contain exactly all the values from Left()) and Right()), respectively (by
the inductive hypothesis) and in addition to those (1...= also contain Key()) (in (=′+1) so it
clearly contains exactly all the values in ).

If ) is a binary search tree then so are Left()) and Right()). Therefore (1...=′ is sorted
(inductive hypothesis), is followed by Key()) which is larger than all the values in (1...=′ (by
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definition of binary search trees), which is smaller than all the values in (=′+1...= (again, that
is how binary search trees work), which is also sorted (by inductive hypothesis). It follows
that the whole array (1...=′ is sorted, as desired.

Conversely, assume now that ) is not a binary search tree. The possible reasons are that
either:

(a) Left()) [or Right())] is not a binary search tree, case in which (1...=′ [or (=′+1...=] is not
sorted by induction hypothesis and so (1...= is not sorted either.

(b) There is a value in Left()) larger than (=′+1 = Key()). That value is somewhere in (1...=′

(by induction hypothesis), which means that a larger value precedes a smaller value
and so (1...= is not sorted.

(c) There is a value in Right()) smaller than (=′+1 = Key()). That value is somewhere in
(=′+2...= , which means again that a larger value precedes a smaller value and so (1...= is
not sorted.

In all, the array (1...= is not sorted whenever ) is not a binary search tree.

The running time for Inorder is tricky if we try to express it as a recurrence. The base case is
simple ()(0) = 0), but for the general case the best we can do is)(=) = 1+)(=′)+)(=−1−=′).
I cannot make any assumption about the actual value of =′ since the tree can have one sub-
tree empty, or have the nodes equally divided between the two sub-tress, or (most likely)
something in between. This means that I do not know how to solve that recurrence as is.

One way to go about it is to solve the recurrence for the extremes (=′ = =/2 and =′ = 0), which
will both yield )(=) = Θ(=) (try it), which makes me confident in guessing that )(=) = Θ(=)
for all possible values of =′. I can then verify my guess by induction over = (again, try it).
This is not hard to do, but is very tedious, so instead I am going to use a trick: Each value in
) is inserted in ( exactly once given the correctness property established above. There are
= values in ). Therefore overall Inorder()) performs exactly = insertions in Θ(1) time each,
for an overall running time in Θ(=).

After the call to Inorder we have a for loop that clearly iterates = − 1 times, so in all the
running time of CheckBST is Θ(=) + = − 1 = Θ(=). This should be optimal considering that
we cannot skip checking any value in ) and still be able to tell if it is a binary search tree.

Alternative solution: Most if not all submissions came up with the following different, nicer
algorithm:

algorithm CheckBSTV2()):
CheckBSTRec(),−∞,+∞)

algorithm CheckBSTRec(), ;, ℎ):
if Empty()) then

return True

else

if Key()) ≤ ; ∨Key()) ≥ ℎ then return False

return CheckBSTRec(Left()), ; ,Key())) ∧ CheckBSTRec(Right()),Key()), ℎ)

I wish somebody told me where did that come from (nobody actually bothered), as it is
highly unlikely that everybody developed the same algorithm independently. In any event,
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this algorithm is nicer because it does not use any additional storage, it has the same linear
time complexity (one call to CheckBSTRec for each node) and is also correct.

To see the latter we proceed by structural induction. To involve the bounds ; and ℎ we must
actually prove the following stronger property: CheckBSTRec(), ;, ℎ) returns True iff ) is a
BST, and all the keys in ) are between ; and ℎ.

For the base case, an empty tree is obviously a BST and its (nonexisting) keys are obviously
between the stated bounds. In this case CheckBSTRec returns True, as it should.

For the inductive step, whenever either of the two recursive calls return False the respective
sub-trees are not BST (by inductive hypothesis), and so the current tree is not a BST either.
Guess what, the current call returns False as desired. Otherwise, by inductive hypothesis
Left(T) is a BST with keys between ; and Key()), and Right(T) is a BST with keys between
Key()) and ℎ. Then ) is a BST iff ; ≤ Key()) ≤ ℎ and indeed the call returns False iff this is
not the case (according to the conditional before the return), again as desired.

4. Design a non-recursive algorithm for the CFindset (collapsing find) disjoint set algorithm.
Establish the correctness and analyze the running time of your algorithm.

Answer:

I am going to do it in two steps: First we find the root (which we will eventually return).
Then we traverse again the path from 8 to the just found root, setting all the parent links to
the root.

algorithm CFindset(8):
root← 8
while parentroot ≠ root do

root← parentroot

9 ← parent8
while 9 ≠ root do

parent8 ← root
8 ← 9
9 ← parent8

return root

The first loop iterates from the leaf 8 up along the parent path to the root, so the running time
is the same as the height of the tree. The same is true for the second loop as well, though in
a bit more complicated a manner (in one iteration 8 is assigned 9 and in the next 9 is assigned
the parent of 8). Overall the running time is the same as the height of the tree, just like for
the recursive version.

The correctness of the first loop is immediate: We just assign root to its parent until we can
no longer go up (since parentroot = root). This establishes root as the root of the tree and also
ensures termination since the path to root is finite and we go up along that path at each
iteration.
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An obvious invariant at the end of each iteration of the second loop is parent8 = root∧9 = parent8
(this invariant follows form the assignments inside the loop). The first term establishes that
the root of 9 is collapsed to root as intended. The second term ensures that in the next iteration
when we do 8 ← 9 we go one step up in the tree. This in turn establishes that (0)we collapse
the root for all the nodes 9 in the path and (1) the loop terminates (since the path to the root
is finite).

5. The transpose �T of a directed graph � = (+, �) reverses all its edges that is, �T =

(+, {(E, D) ∈ + × + : (D, E) ∈ �}). Design efficient algorithms for computing �T from �
for both the adjacency-list and adjacency-matrix representations of �. Establish the correct-
ness and analyze the running times of your algorithms.

Answer:

Let as usual = = |+ | and < = |�| . Also let � and �T be the matrix representation of � and
�T respectively. It then holds that �8, 9 = �T

9,8
for all 1 ≤ 8 , 9 ≤ =. Indeed, whenever �8, 9 = 1

the edge (8 , 9) ∈ � which implies that (9 , 8) ∈ �T, that is, �T
8, 9

= 1. Conversely, �8, 9 = 0 implies

that there is no edge (8 , 9) in G, which means that there is no edge (9 , 8) in �T either that is,
�T

9,8
= 0. Therefore �T can be found using the following straightforward algorithm:

algorithm TransposeMatrix(�; �T):
for 8 = 1 to = do

for 9 = 1 to = do

�T
8, 9
← � 9,8

The running time is clearly Θ(=2), which I argue to be optimal for the matrix representation
since we have to assign a value to each �T

8, 9
to create �T.

If the graph is represented as an adjacency list I argue that the following straightforward
algorithm is also optimal. With ! and !T the adjacency list representation of � and �T,
respectively:

algorithm TransposeList(!; !T):
for 8 = 1 to = do !T

8
← Nil

for 8 = 1 to = do

foreach 9 ∈ !8 do Insert(8 , !T
9
)

Correctness is pretty straightforward: 9 ∈ !8 means that (8 , 9) is a vertex in � and so (9 , 8)
must be a vertex �T that is, 8 ∈ !T

9
. This is quite literally what the foreach loop does.

In terms of running time, we spend Θ(=) time to create the lists in the first loop. To the
second loop now, Insert is a constant time operation (since there is nothing preventing us
from inserting at the begining of the list). The foreach loop executes in linear time (it is a
simple list traversal). We perform one Insert for every edge in the adjacency list and so the
overall running time is Θ(<). The overall running time is then Θ(= + <). I argue that this is
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once more optimal: The = adjacency lists in !T must be created no matter what. Afterward
The graph �T has < edges and so we must perform Ω(<) operations to find them out.

Make sure you review the submission guidelines posted on the course’s Web site before submit-
ting. Note in particular that the only acceptable ways to describe an algorithm are pseudo-code
(preferred) or actual code. Textual descriptions in particular are not acceptable.
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