
CS 317, Assignment 2

Due on 8 October in class

1. algorithm DoSomething(𝐴, 𝑚, 𝑛):
if 𝑛 − 𝑚 = 0 then

return
else

for 𝑖 = 𝑚 to 𝑛 do
𝐴𝑖 , 𝑗 ← 𝐴𝑗 ,𝑖

for 𝑗 = 𝑚 to 𝑛 do
𝐴𝑖 , 𝑗 ← 𝐴𝑖 , 𝑗 + 𝑖 + 𝑗

DoSomething(𝐴, 𝑚 + 1, 𝑛)

algorithm DoSomethingElse(𝐴, 𝑚, 𝑛):
if 𝑛 − 𝑚 = 0 then

return
else

for 𝑖 = 𝑚 to 𝑛 do
𝐴𝑖 , 𝑗 ← 𝐴𝑗 ,𝑖 + 𝑖

𝑝 ← (𝑛 − 𝑚)/3
DoSomethingElse(𝐴, 𝑚, 𝑚 + 𝑝)
DoSomethingElse(𝐴, 𝑚+𝑝+1, 𝑚+2𝑝)
DoSomethingElse(𝐴, 𝑚 + 2𝑝 + 1, 𝑛)

(a) Write down the recurrence relation for the time complexity of each of the above algo-
rithms. Justify your answer fully.

(b) Solve the two recurrence relations you just developed using the characteristic equation
technique and thus give the running time of each algorithm in Θ notation. Note that I
am only asking for the complexity and so you do not need to worry about constants.

2. Consider a recursive version of insertion sort that goes like this: To sort a list of size 𝑛, sort the
last 𝑛 − 1 elements recursively, then deal with the first element.

(a) Write down the algorithm.
(b) Write down the recurrence relation for the running time of your algorithm.
(c) Solve the recurrence relation with full details and thus give the running time of your

algorithm in Θ notation.

3. Design an algorithm that received a binary tree and returns true iff that tree is a binary search
tree. Establish the correctness and analyze the running time of your algorithm.

4. Design a non-recursive algorithm for the CFindset (collapsing find) disjoint set algorithm.
Establish the correctness and analyze the running time of your algorithm.

5. The transpose 𝐺T of a directed graph 𝐺 = (𝑉, 𝐸) reverses all its edges that is, 𝐺T =

(𝑉, {(𝑣, 𝑢) ∈ 𝑉 × 𝑉 : (𝑢, 𝑣) ∈ 𝐸}). Design efficient algorithms for computing 𝐺T from 𝐺

for both the adjacency-list and adjacency-matrix representations of 𝐺. Establish the correct-
ness and analyze the running times of your algorithms.

Make sure you review the submission guidelines posted on the course’s Web site before submit-
ting. Note in particular that the only acceptable ways to describe an algorithm are pseudo-code
(preferred) or actual code. Textual descriptions in particular are not acceptable.


