
CS 317, Assignment 3

Answers

This assignment is all about divide and conquer algorithms, even if this is not explicitly stated in

the questions below.

1. You are given a sorted sequence of integers 𝐴1...𝑛 that has been circularly shifted 𝑘 positions

to the right. For example, ⟨35, 42, 5, 15, 27, 29⟩ is a sorted sequence that has been circularly

shifted 𝑘 = 2 positions, while ⟨27, 29, 35, 42, 5, 15⟩ has been shifted 𝑘 = 4 positions.

Design an algorithm that finds the index of the largest element in 𝐴 in 𝑂(log 𝑛) time. Analyze

the running time of your algorithm and provide a proof of correctness.

Answer:

For 𝑘 = 0 the largest element is 𝐴𝑛 , and 𝐴𝑖 ≤ 𝐴𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Consider now 𝐴 in a

circular fashion i.e., the element after 𝐴𝑛 (that is, 𝐴𝑛+1) is 𝐴1. Clearly, 𝐴𝑛 ≥ 𝐴𝑛+1. Overall all

the elements in the circular array are followed by a larger element, with the exception of the

largest (𝐴𝑛) which is followed by a smaller element (the sole inversion). This property is not

affected by a circular shift (which preserves the circular ordering) so it is valid for all 𝑘. We

can thus find the largest element by looking for the inversion following it.

We can also find whether the sub-array 𝐴𝑙...ℎ−1 contains the maximum in constant time

by checking whether 𝐴𝑙 > 𝐴ℎ (which implies an inversion). In all the following binary

search-like algorithm will do:

algorithm FindMax(𝐴, 𝑙, ℎ):
if 𝑙 = ℎ then return 𝐴𝑙

else
𝑘 ← (ℎ − 𝑙)/2 (middle of the array)
if 𝐴𝑘 > 𝐴𝑘+1 then return 𝑘 (the middle is the maximum)
if 𝐴𝑙 > 𝐴𝑘 then

return FindMax(𝐴, 𝑙, 𝑘 − 1) (inversion in the first half means the maximum is there)
else

return FindMax(𝐴, 𝑘 + 1, ℎ) (not in the first half so it must be in the second half)

The above argument readily establishes the correctness of the algorithm, but here is a formal

proof by structural induction, for completeness:

For the base case, the algorithm correctly returns the sole element of the array as the maxi-

mum. For the inductive step, we note that the maximum is either 𝐴𝑘 , in 𝐴𝑙...𝑘−1, or in 𝐴𝑘+1...ℎ .

In the former case the index 𝑘 is correctly returned since the condition of the first if is true



(the maximum is followed by an inversion). Otherwise if the inversion is located in 𝐴𝑙...𝑘−1

then 𝐴𝑙 > 𝐴𝑘 and so we correctly call FindMax(𝐴, 𝑙, 𝑘 − 1) which will return the index of

the maximum value by the inductive hypothesis (we already know that the maximum will

be somewhere in 𝐴𝑙...𝑘−1). Finally, if 𝐴𝑙 ≤ 𝐴𝑘 then we know that the maximum cannot be in

𝐴𝑙...𝑘−1. We also know that the maximum is not 𝐴𝑘 (for it would have been returned earlier).

Therefore the maximum can only be in 𝐴𝑘+1...ℎ , and the recursive call FindMax(𝐴, 𝑘 + 1, ℎ)

will correctly find it for us by the inductive hypothesis.

The running time is just like the running time for binary search: we spend a constant time

before the recursive call which is on half the original sequence, and so 𝑇(𝑛) = 𝑇(𝑛/2) + 1

which means that 𝑇(𝑛) = Θ(log 𝑛) (we already discussed that in class), as desired.

2. We want to sort a stack of 𝑛 pancakes by size so that the largest pancake is at the bottom and

the smallest at the top. For convenience we index the stack from 1 to 𝑛, with index 1 at the

top and 𝑛 at the bottom. We are allowed only two operations: FindLargest(𝑛) returns the

index of the largest pancake in an 𝑛-pancake stack, and Flip(𝑘) flips the stack of pancakes

1 . . . 𝑘 so that the 𝑘-th pancake becomes the first, the 𝑘 − 1-st pancake becomes the second,

and so on (just like inserting a spatula immediately below index 𝑘 and using it to flip the

stack of pancakes above it).

(a) Design a linear-time algorithm to sort an arbitrary stack of 𝑛 pancakes. Analyze the

running time of your algorithm and provide a proof of correctness.

Answer:

We can bring the largest pancake at the top by finding it and then flipping the stack

ending at the pancake we found. We can then bring the largest pancake in its proper

place (at the bottom) by flipping the whole stack. What is left is to sort the top of the

stack without the pancake we already placed in its proper place:

algorithm FlipAll(𝑛):
if 𝑛 = 1 then return
else

𝑘 ← FindLargest(𝑛)
Flip(𝑘)
Flip(𝑛)
FlipAll(𝑛 − 1)

Correctness is easily established by structural induction (what else): For the base case we

have a single pancake which is already sorted so the algorithm correctly does nothing.

For the inductive step, 𝑘 is the index of the largest pancake. We then flip the stack 1 to

𝑘 and so pancake 𝑘 (the largest) is now at the top. We then flip the whole stack with the

obvious consequence that the top pancake (the largest) is now at the bottom. This means

that the largest pancake is now in the right place (index 𝑛 or bottom) in the stack. The

remaining 𝑛 − 1 pancakes are then sorted by the recursive call (inductive hypothesis),

for an overall sorted stack. Bring in the syrup!

2



I did not insist on total correctness, but perhaps now is a good time to mention it.

The above proves partial correctness. For a complete proof we also need to consider

termination, thus proving total correctness. In this respect we note that FlipAll always

terminates since the argument decreases by 1 on each recursive call (from 𝑛 to 𝑛 − 1) so

it will eventually reach 1 which is the base case.

The number of flips is given by 𝑇(1) = 0 (no flips for a single pancake) and 𝑇(𝑛) =
2+𝑇(𝑛 − 1) (two flips then the recursive call) or 𝑇(𝑛) −𝑇(𝑛 − 1) = 2. The homogeneous

part yields 𝑟 − 1 = 0 and so 𝑟1 = 1 and for the non-homogeneous part we have 𝑏 = 1

and 𝑑 = 0 that is, (𝑟 − 1)1 = 0 and so 𝑟2 = 𝑟1 = 1. The running time is therefore

𝑇(𝑛) = 𝑐01
𝑛 + 𝑐1𝑛1

𝑛 = 𝑐0 + 𝑐1𝑛 = Θ(𝑛), right where we wanted it to be.

(b) Discuss the optimality of your algorithm. (Hint: describe a stack of 𝑛 pancakes that

requires Ω(𝑛) flips to sort.)

Answer:

We assemble our stack of pancakes by putting the largest at the top, the next largest at

the bottom, and so on recursively until we run out of pancakes. For example, the set

of pancakes {1, 2, 3, 4, 5, 6, 7} (where the number denotes the size of that pancake) will

end up arranged as the stack ⟨7, 5, 3, 1, 2, 4, 6⟩ (with the top on the left).

We show that we need at least 𝑛 − 1 flips to sort this stack by induction over 𝑛: For a

stack of height 1 we clearly need 0 (1 − 1) flips. We now have a stack with the largest

pancake at the top, so clearly not in the right place; therefore we need at least one flip

to bring it to the said right place. If we flip the whole stack then we need to sort the

remaining 𝑛 − 1 pancakes which takes at least 𝑛 − 2 flips by inductive hypothesis, so the

overall number of flips is no less than 𝑛 − 2 + 1 = 𝑛 − 1, as desired. Suppose now that

we do not flip the whole stack, only some prefix of 𝑘 pancakes. The largest pancake is

not at the bottom, so in all we will spend at least 2 flips to bring it there (the one we

already performed and at least one more). The stack below the largest pancake as well

as the stack at the top of said largest pancake have both the same recursive structure as

the original stack, so they require at least 𝑛 − 𝑘 − 1 and 𝑘 − 2 flips to sort, respectively by

inductive hypothesis. This means that overall we need at least 2+𝑛− 𝑘−1+ 𝑘−2 = 𝑛−1

flips to sort the whole stack, as desired.

This particular stack of pancakes requires Ω(𝑛) time to sort, our algorithm runs in Θ(𝑛)
time, so our algorithm is optimal.

(c) Suppose now that one side of each pancake is burned. Describe a linear-time algorithm

that sorts an arbitrary stack of 𝑛 pancakes so that the burned side of each pancake faces

down. Analyze the running time of your algorithm and provide a proof of correctness.

Answer:

I did not specify this explicitly in the question, but we certainly need some way to see

whether a pancake is with the burned side up or down. For the simple algorithm below

3



I only need to check the top pancake, so I will minimally add to my available operations

the predicate BurnedIsDown() which returns true iff the top pancake is burned side

down.

This is then the simplest algorithm I can think of: We flip the largest pancake to the top,

just like we did earlier. If that pancake is burned side up then we just flip the whole stack

and we are done with that pancake (which is at the bottom with the burned side down).

Otherwise we flip the top (largest) pancake, which thus ends up with the burned side

up. Then we flip the whole stack; once more the largest pancake is in its proper place

and with the proper side down. All is left is to recursively sort the rest of the pancakes.

algorithm FlipAllBurned(𝑛):
if 𝑛 = 1 then return
else

𝑘 ← FindLargest(𝑛)
Flip(𝑘)
if BurnedIsDown() then Flip(1)
Flip(𝑛)
FlipAllBurned(𝑛 − 1)

This is a rather minor modification of FlipAll. The proof of correctness goes just like

for FlipAll with very minor additions, so I am not going to reproduce it here (but you

are encouraged to try it out). Asymptotically the running time is just like for FlipAll

(we only add a constant-time step) that is, Θ(𝑛).
This algorithm is once more optimal. Indeed, the original problem is a simplification of

this problem, and so the lower bound Ω(𝑛) established earlier for the original problem

applies to this problem as well. Our algorithm FlipAllBurned also meets this lower

bound, and thus is optimal.

Note in passing that even if they are asymptotically optimal, neither FlipAll nor FlipAll-

Burned are the last word in pancake sorting. These problems have received sustained

attention and better algorithms have been developed; their running times are still Θ(𝑛),
but the constants hidden by the asymptotic notation can be and have been lowered in

the past. Obviously though this is beyond the matter covered in the course and I will

stop here since I am getting really hungry by now.

3. Let 𝑇 be a binary tree with 𝑛 vertices. Deleting any vertex 𝑣 splits 𝑇 into at most three

subtrees, one rooted at the left child of 𝑣 (if any), the second rooted at the right child of 𝑣 (if

any), and the third containing the parent of 𝑣 (if any). We call 𝑣 a central vertex if each of

these smaller trees has at most 𝑛/2 vertices.

(a) Show that every binary tree has a central vertex.

Answer:

To avoid tiresome repetitions, I will abuse the notation in what follows and refer to

the tree rooted at a vertex 𝑣 also as 𝑣. Which of the two I mean will be clear from the

context.

4



Let Vertices(𝑥) denote the number of vertices in the tree rooted at 𝑥. Call our input

tree 𝑇 and let 𝑛 = Vertices(𝑇). We now go down in 𝑇 either left or right toward

the child with the largest number of vertices, stopping at the first vertex 𝑐 such that

Vertices(Left(𝑐)) ≤ 𝑛/2 and Vertices(Right(𝑐)) ≤ 𝑛/2. We started with a tree with 𝑛

vertices, each time we do down the number of vertices decreases (since we no longer

count the current vertex let alone the vertices in the unexplored child), and we can

continue down our path until we reach a leaf that is, a tree with 0 vertices. This means

that we will always encounter on our path a vertex 𝑥 such that Vertices(𝑥) ≤ 𝑛/2. The

parent of 𝑥 is then our 𝑐, which thus always exists.

Let us see now how the vertex 𝑐 splits the tree. Let 𝑝 be the parent of 𝑐. It must be that

Vertices(𝑐) > 𝑛/2, for otherwise we would have stopped at 𝑝. Indeed, Vertices(𝑐) ≤ 𝑛/2
means that the sibling of 𝑐 also has less than 𝑛/2 vertices (𝑐 has more vertices than its

sibling) and the stopping condition would have been met at 𝑝. Since 𝑐 has more than

𝑛/2 vertices, it follows that the tree containing 𝑝 has less than 𝑛/2 vertices. Additionally,

Vertices(Left(𝑐)) ≤ 𝑛/2 and Vertices(Right(𝑐)) ≤ 𝑛/2 by definition. It follows that 𝑐 is

a central vertex.

(b) Describe an algorithm to find a central vertex in an arbitrary given binary tree. Analyze

the running time of your algorithm and provide a proof of correctness.

Answer:

The previous question establishes the correctness of the following algorithm:

algorithm FindCenter(𝑇):
CountVertices(𝑇)
FindCenterRec(𝑇,Vertices(𝑇))

algorithm CountVertices(𝑇):
if Null(𝑇) then return 0

else
𝑛𝑙 ← CountVertices(Left(𝑇))
𝑛𝑟 ← CountVertices(Right(𝑇))
Vertices(𝑇) ← 1 + 𝑛𝑙 + 𝑛𝑟

return Vertices(𝑇)
algorithm FindCenterRec(𝑣,𝑛):

𝑛𝑙 ← Vertices(Left(𝑣))
𝑛𝑟 ← Vertices(Right(𝑣))
if 𝑛𝑙 ≤ 𝑛/2 ∧ 𝑛𝑟 ≤ 𝑛/2 then return 𝑣

if 𝑛𝑙 ≤ 𝑛𝑟 then return FindCenterRec(Right(𝑣), 𝑛)
else return FindCenterRec(Left(𝑣), 𝑛)

I am not going to bother with the correctness of CountVertices, it is just too basic.

FindCenter could have also been implemented iteratively, but as I said at the beginning

of the handout this is all about divide and conquer (aka recursive) approaches, hence

my recursive solution.

5



As for the running time, we note that CountVertices(𝑇) takes Θ(𝑛) time since we

have one call to CountVertices for each vertex in the tree. Every recursive call to

FindCenterRec happens one level down in the tree form the parent call, so there cannot

be more calls to FindCenterRec than the height of the tree, which is smaller than 𝑛.

Therefore the overall running time is Θ(𝑛) (being dominated by the running time of

CountVertices(𝑇)).

Make sure you review the submission guidelines posted on the course’s Web site before submitting.

Note in particular (last warning) that the only acceptable ways to describe an algorithm are pseudo-

code (preferred) or actual code. Textual descriptions in particular are not acceptable.

6


