
CS 317, Assignment 3

Due on 22 October in class

This assignment is all about divide and conquer algorithms, even if this is not explicitly stated in

the questions below.

1. You are given a sorted sequence of integers 𝐴1...𝑛 that has been circularly shifted 𝑘 positions

to the right. For example, ⟨35, 42, 5, 15, 27, 29⟩ is a sorted sequence that has been circularly

shifted 𝑘 = 2 positions, while ⟨27, 29, 35, 42, 5, 15⟩ has been shifted 𝑘 = 4 positions.

Design an algorithm that finds the index of the largest element in 𝐴 in 𝑂(log 𝑛) time. Analyze

the running time of your algorithm and provide a proof of correctness.

2. We want to sort a stack of 𝑛 pancakes by size so that the largest pancake is at the bottom and

the smallest at the top. For convenience we index the stack from 1 to 𝑛, with index 1 at the

top and 𝑛 at the bottom. We are allowed only two operations: FindLargest(𝑛) returns the

index of the largest pancake in an 𝑛-pancake stack, and Flip(𝑘) flips the stack of pancakes

1 . . . 𝑘 so that the 𝑘-th pancake becomes the first, the 𝑘 − 1-st pancake becomes the second,

and so on (just like inserting a spatula immediately below index 𝑘 and using it to flip the

stack of pancakes above it).

(a) Design a linear-time algorithm to sort an arbitrary stack of 𝑛 pancakes. Analyze the

running time of your algorithm and provide a proof of correctness.

(b) Discuss the optimality of your algorithm. (Hint: describe a stack of 𝑛 pancakes that

requires Ω(𝑛) flips to sort.)

(c) Suppose now that one side of each pancake is burned. Describe a linear-time algorithm

that sorts an arbitrary stack of 𝑛 pancakes so that the burned side of each pancake faces

down. Analyze the running time of your algorithm and provide a proof of correctness.

3. Let 𝑇 be a binary tree with 𝑛 vertices. Deleting any vertex 𝑣 splits 𝑇 into at most three

subtrees, one rooted at the left child of 𝑣 (if any), the second rooted at the right child of 𝑣 (if

any), and the third containing the parent of 𝑣 (if any). We call 𝑣 a central vertex if each of

these smaller trees has at most 𝑛/2 vertices.

(a) Show that every binary tree had a central vertex.

(b) Describe an algorithm to find a central vertex in an arbitrary given binary tree. Analyze

the running time of your algorithm and provide a proof of correctness.

Make sure you review the submission guidelines posted on the course’s Web site before submitting.

Note in particular (last warning) that the only acceptable ways to describe an algorithm are pseudo-

code (preferred) or actual code. Textual descriptions in particular are not acceptable.


