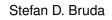


Introduction to the Design and Analysis of Algorithms



CS 317, Fall 2024

- It all starts with a problem: a task to be performed or a question to be answered
 - Sort a sequence S of n numbers in increasing order
 - 2 Determine whether the number *x* is in the sequence *S* of *n* numbers
 - Find the *n*th term in the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- Parameters: variables that are not assigned values in the statement of the problem
 - 🚺 S, n
 - 2 S, n, x
 - 3 n
- Algorithm: A rigorous, step-by-step procedure to solve a problem for all possible values of the parameters
 - Named after Abū 'Abdallāh Muḥammad ibn Mūsā al-Khwārizmī, or Mohammed Al-Khorezmi for short (Baghdad, 780–850)

PROBLEMS AND ALGORITHMS (CONT'D)

- Instance: A specific assignment of values to the parameters
 - **()** Sorting instance: $S = \langle 8, 3, 5, 6, 3, 9, 2 \rangle, n = 7$
 - **2** Searching instance: $S = \langle 8, 3, 5, 6, 3, 9, 2 \rangle$, n = 7, x = 9
 - Sibonacci calculation instance: n = 4
- Solution: The answer to the question posed in the problem on the given instance
 - $S = \langle 2, 3, 3, 5, 6, 8, 9 \rangle$
 - 2 Yes/True
 - 3 🗿
- A traditional algorithm:
 - Receives an input
 - Produces an output
 - Is deterministic i.e., all the intermediate results are unambiguously determined by the previous steps and input
 - It is correct (aka partial correctness)
 - It always terminates (aka total correctness)
 - It is general in the sense that it works for any set of input values

DESIGN AND ANALYSIS OF ALGORITHMS

- Algorithm design (the Art)
 - Can consider different techniques such as
 - Divide and conquer

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

- Greedy
- Dynamic programming
- Backtracking
- Branch and bound
- Algorithm analysis (the Science)
 - Proof of partial and total correctness
 - Performance analysis (time and space)
- Throughout the course we will describe algorithms using pseudocode
 - Flexible enough to allow for concise descriptions, but rigorous enough to be easily translated into actual code in any half-decent programming language

ALGORITHM DESIGN

There are multiple algorithms for most problems

٩	Find the largest of four val-
	ues <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>

- Which algorithm is More time efficient? (number of comparisons!)
 - More space efficient?
 - More elegant? (e.g., simpler)

largest \leftarrow a if $\tilde{b} > largest$ then | largest \leftarrow b if c > largest then largest $\leftarrow c$ if d > largest then largest $\leftarrow d$ return largest

else return d else if c > d then **return** c else return d else if b > c then if b > d then return b else return d else if c > d then return c else return d

if a > b then

if a > c then

if a > d then

return a

Multiplication of two integers

$\frac{\text{Traditional}}{(0981 \times 0123)}$	Divide and conquer $(09 81 \times 01 23)$
981	09 81
x 123	x 01 23
2943	18 63 (23 x 81)
1962	207 (23 x 09)
981	81 (01 x 81)
	09 (01 x 09)
120663	
	1206 63

Peasant multiplication $(m \times n)$

result \leftarrow 0 repeat if *m* is odd then l result \leftarrow result + n $m \leftarrow m \operatorname{div} 2$ $n \leftarrow n + n$

until *m* < 1:

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

ALGORITHM DESIGN (CONT'D)

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

CS 317, Fall 2024

ALGORITHM DESIGN (CONT'D)

Sequential search:

• Searching for a given value in a sequence of values

- Computing the *n*th Fibonacci number • Recursive: algorithm FIB (*n*): if n < 1 then return n else **return** FIB (*n*−1) + FIB (*n*−2)
 - Iterative:

algorithm FIB (n): $f[0] \leftarrow 0$ if n > 0 then $f[1] \leftarrow 1$ for i = 2 to n do $| f[i] \leftarrow f[i-1] + f[i-2]$ return f[n]

- Which algorithm is more elegant?
- Which algorithm is faster?

```
algorithm SEQSEARCH(x, S, I, h):
                 i \leftarrow I
                 while i < h do
                      if S[i] = x then return i
                      else i \leftarrow i + 1
                return -1
          Binary search:
             algorithm BINSEARCH(x, S, I, h):
                 i ← I
                 j \leftarrow h
                 while i \leq j do
                      m \leftarrow (i+j)/2
                      if S[m] = x then return m
                      else if S[m] > x then j \leftarrow m - 1
                      else i \leftarrow m+1
                return -1
          Speed? Restrictions?
             (BINSEARCH is not an algorithm unless preconditions are stated)
Introduction to the Design and Analysis of Algorithms (S. D. Bruda)
```


• The performance of an algorithm (running time, space requirements) must be a function of input size

- Critical to define a meaningful input size
 - Running time may vary widely when different concepts of size are considered
- Example: The running time of an algorithm for multiplying two $n \times n$ matrices
 - Compare the running time as a function of *n* (the dimension of the matrix) vs. a function of $n \times n$ (the number of values in one matrix) vs. a function of $2 \times n \times n$ (the total number of values involved)
 - What would be a fair notion of input size?
- Example: Consider an algorithm that determines whether the input *N* is a prime number
 - Compare the running time as a function of *N* (the input number itself) vs. a function of the number of digits of *N*
 - What would be a fair notion of input size?

TIME COMPLEXITY

- During the course we will mostly analyze algorithms with respect to their running time
 - Arguably the most significant measure of performance
- Running time can vary depending on many other factors than the size of the input, such as the power of the machine the implementation will run on
 - We want a measure of performance that is independent of such factors
 - We will split the running time of algorithms into classes that ignore this kind of factors (multiplicative or additive constants) ⇒ time complexity
 - We will further analyze the time complexity of an algorithm as the input size keeps increasing indefinitely ⇒ asymptotic time complexity
- The running time of many algorithms depends of the particular instance the algorithm runs on, so one may consider
 - worst-case time complexity (used the most often)
 - average-case time complexity (used sometimes)
 - best-case time complexity (not very meaningful, rarely used if ever)
- Amortized complexity determines the running time an algorithm is statistically likely to need (under various definitions of "likely")
 - Most useful for operations over data structures and also online algorithms

CS 317, Fall 2024 8 / 9

4 8 / 9 Introduction to the Design and Analysis of Algorithms (S. D. Bruda

CS 317, Fall 2024 9 / 9