Introduction to the Design and Analysis of

Algorithms

Stefan D. Bruda

CS 317, Fall 2024

PROBLEMS AND ALGORITHMS (CONT’D)

@ Instance: A specific assignment of values to the parameters

@ Sorting instance: S = (8,3,5,6,3,9,2),n=7
@ Searching instance: S = (8,3,5,6,3,9,2),n=7,x =9
© Fibonacci calculation instance: n = 4

@ Solution: The answer to the question posed in the problem on the given

instance
@ S=(2,3,3,5,6,8,9)
@ Yes/True
Q3
@ A traditional algorithm:
o Receives an input
@ Produces an output

o |s deterministic i.e., all the intermediate results are unambiguously

determined by the previous steps and input
o ltis correct (aka partial correctness)
o |t always terminates (aka total correctness)

o ltis general in the sense that it works for any set of input values

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

CS 317, Fall 2024

2/9

PROBLEMS AND ALGORITHMS

@ It all starts with a problem: a task to be performed or a question to be

answered
@ Sort a sequence S of n numbers in increasing order

@ Determine whether the number x is in the sequence S of n numbers

@ Find the nth term in the Fibonacci sequence 0,1, 1,2, 3,5, 8, 13,21, ...
@ Parameters: variables that are not assigned values in the statement of

the problem
Q@ S n
Q S nx
Qn

@ Algorithm: A rigorous, step-by-step procedure to solve a problem for all

possible values of the parameters

o Named after Abl 'Abdallah Muhammad ibn Masa al-Khwarizmi, or

Mohammed Al-Khorezmi for short (Baghdad, 780-850)

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

DESIGN AND ANALYSIS OF ALGORITHMS

@ Algorithm design (the Art)
Can consider different techniques such as
o Divide and conquer
o Greedy
o Dynamic programming
o Backtracking
e Branch and bound

@ Algorithm analysis (the Science)

o Proof of partial and total correctness
o Performance analysis (time and space)

@ Throughout the course we will describe algorithms using pseudocode

CS 317, Fall 2024

1/9

o Flexible enough to allow for concise descriptions, but rigorous enough to be
easily translated into actual code in any half-decent programming language

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

CS 317, Fall 2024

3/9

ALGORITHM DESIGN

ALGORITHM DESIGN (CONT’D)

@ There are multiple algorithms for most problems o Multiplication of two integers

@ Find the largest of four val- largestl<— a . if a > bthen
if b > largest then if a > c then
ues. abc, d) | largest < b if a > d then - o o
@ Which algorithm is if ¢ > largest then L returna Traditional Divide and conquer Peasant multiplication
o More time efficient? L largest ¢ eseelse return d (0981 x 0123) (09]81 x 01/23) (mx n)
(number of 'de Z/ﬁéﬁ?i then if ¢ > d then 981 09 81 result < 0
comparisons!) L return ¢ x 123 x 01 23 repeat
return Jargest else return d P .
o More space efficient? N T if mis odd then
o More elegant? if b > ¢ then 2943 18 63 (23 x 81) L result An result+n
(e.g., simpler) .be > d then 1962 207 (23 x 09) m < mdiv 2
reramn 981 81 (01 x 81) n«n+n
else return d untilm< 1:
else —-————= 09 (01 x 09) .
if c > d then 120663 = 0o——mm———
L returnc
| else return d 1206 63

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

ALGORITHM DESIGN (CONT’D)

@ Computing the nth Fibonacci number

CS 317, Fall 2024

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

ALGORITHM DESIGN (CONT’D)

CS 317, Fall 2024

@ Searching for a given value in a sequence of values

@ Sequential search:

o Recursive: algorithm SEQSEARCH(x, S, /, h):
algorithm FiB (n): i1
if n <1 then while i < hdo
| returnn if S[i] = x then return i
else L else /<« i+1

| return FiB (n—1) + FIB (n—2)

o lterative:

L return —1

o Binary search:
algorithm FiB (n): algorithm BINSEARCH(x, S, /, h):
fl0] + 0 i1
if n > 0 then j<h
f[1] « 1 while / < j do
fori=2to ndo m <« (i+/)/2

|]« fli —1]+f[i — 2]
return f[n]

@ Which algorithm is more elegant?
@ Which algorithm is faster?

if S[m] = x then return m
else if S[m] > x then j + m—1
elsei«+ m+1

L return —1

o Speed? Restrictions?

5/9

(BINSEARCH is not an algorithm unless preconditions are stated)

CS 317, Fall 2024 7/9

CS 317, Fall 2024 6/9 Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

ALGORITHM ANALYSIS

TIME COMPLEXITY

@ The performance of an algorithm (running time, space requirements)
must be a function of input size
o Critical to define a meaningful input size
@ Running time may vary widely when different concepts of size are considered
o Example: The running time of an algorithm for multiplying two n x n matrices
@ Compare the running time as a function of n (the dimension of the matrix) vs. a
function of n x n (the number of values in one matrix) vs. a function of 2 x n x n
(the total number of values involved)
@ What would be a fair notion of input size?
o Example: Consider an algorithm that determines whether the input N is a
prime number
@ Compare the running time as a function of N (the input number itself) vs. a
function of the number of digits of N
@ What would be a fair notion of input size?

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 8/9

Introduction to the Design and Analysis of Algorithms (S. D. Bruda)

@ During the course we will mostly analyze algorithms with respect to their
running time
o Arguably the most significant measure of performance

@ Running time can vary depending on many other factors than the size of
the input, such as the power of the machine the implementation will run
on

e We want a measure of performance that is independent of such factors

o We will split the running time of algorithms into classes that ignore this kind
of factors (multiplicative or additive constants) = time complexity

o We will further analyze the time complexity of an algorithm as the input size
keeps increasing indefinitely = asymptotic time complexity

@ The running time of many algorithms depends of the particular instance
the algorithm runs on, so one may consider

@ worst-case time complexity (used the most often)
@ average-case time complexity (used sometimes)
@ best-case time complexity (not very meaningful, rarely used if ever)

@ Amortized complexity determines the running time an algorithm is
statistically likely to need (under various definitions of “likely”)

o Most useful for operations over data structures and also online algorithms

CS 317, Fall 2024 9/9

