
Introduction to the Design and Analysis of
Algorithms

Stefan D. Bruda

CS 317, Fall 2024

PROBLEMS AND ALGORITHMS

It all starts with a problem: a task to be performed or a question to be
answered

1 Sort a sequence S of n numbers in increasing order
2 Determine whether the number x is in the sequence S of n numbers
3 Find the nth term in the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Parameters: variables that are not assigned values in the statement of
the problem

1 S, n
2 S, n, x
3 n

Algorithm: A rigorous, step-by-step procedure to solve a problem for all
possible values of the parameters

Named after Abū ’Abdallāh Muh.ammad ibn Mūsā al-Khwārizmı̄, or
Mohammed Al-Khorezmi for short (Baghdad, 780–850)

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 1 / 9

PROBLEMS AND ALGORITHMS (CONT’D)

Instance: A specific assignment of values to the parameters
1 Sorting instance: S = ⟨8, 3, 5, 6, 3, 9, 2⟩, n = 7
2 Searching instance: S = ⟨8, 3, 5, 6, 3, 9, 2⟩, n = 7, x = 9
3 Fibonacci calculation instance: n = 4

Solution: The answer to the question posed in the problem on the given
instance

1 S = ⟨2, 3, 3, 5, 6, 8, 9⟩
2 Yes/True
3 3

A traditional algorithm:
Receives an input
Produces an output
Is deterministic i.e., all the intermediate results are unambiguously
determined by the previous steps and input
It is correct (aka partial correctness)
It always terminates (aka total correctness)
It is general in the sense that it works for any set of input values

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 2 / 9

DESIGN AND ANALYSIS OF ALGORITHMS

1 Algorithm design (the Art)
Can consider different techniques such as

Divide and conquer
Greedy
Dynamic programming
Backtracking
Branch and bound

2 Algorithm analysis (the Science)
Proof of partial and total correctness
Performance analysis (time and space)

Throughout the course we will describe algorithms using pseudocode
Flexible enough to allow for concise descriptions, but rigorous enough to be
easily translated into actual code in any half-decent programming language

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 3 / 9

ALGORITHM DESIGN

There are multiple algorithms for most problems

Find the largest of four val-
ues a, b, c, d
Which algorithm is

More time efficient?
(number of
comparisons!)

More space efficient?

More elegant?
(e.g., simpler)

largest ← a
if b > largest then

largest ← b
if c > largest then

largest ← c
if d > largest then

largest ← d
return largest

if a > b then
if a > c then

if a > d then
return a

else return d
else

if c > d then
return c

else return d

else
if b > c then

if b > d then
return b

else return d
else

if c > d then
return c

else return d

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 4 / 9

ALGORITHM DESIGN (CONT’D)

Multiplication of two integers

Traditional
(0981× 0123)

981

x 123

2943

1962

981

120663

Divide and conquer
(09|81× 01|23)
09 81

x 01 23

18 63 (23 x 81)

207 (23 x 09)

81 (01 x 81)

09 (01 x 09)

1206 63

Peasant multiplication
(m × n)
result ← 0
repeat

if m is odd then
result ← result +n

m← m div 2
n← n + n

until m < 1:

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 5 / 9

ALGORITHM DESIGN (CONT’D)

Computing the nth Fibonacci number
Recursive:

algorithm FIB (n):
if n ≤ 1 then

return n
else

return FIB (n−1) + FIB (n−2)

Iterative:

algorithm FIB (n):
f [0]← 0
if n > 0 then

f [1]← 1
for i = 2 to n do

f [i]← f [i − 1] + f [i − 2]
return f [n]

Which algorithm is more elegant?
Which algorithm is faster?

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 6 / 9

ALGORITHM DESIGN (CONT’D)
Searching for a given value in a sequence of values

Sequential search:
algorithm SEQSEARCH(x , S, l , h):

i ← l
while i ≤ h do

if S[i] = x then return i
else i ← i + 1

return −1
Binary search:
algorithm BINSEARCH(x , S, l , h):

i ← l
j ← h
while i ≤ j do

m← (i + j)/2
if S[m] = x then return m
else if S[m] > x then j ← m − 1
else i ← m + 1

return −1
Speed? Restrictions?
(BINSEARCH is not an algorithm unless preconditions are stated)

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 7 / 9

ALGORITHM ANALYSIS

The performance of an algorithm (running time, space requirements)
must be a function of input size

Critical to define a meaningful input size
Running time may vary widely when different concepts of size are considered

Example: The running time of an algorithm for multiplying two n×n matrices
Compare the running time as a function of n (the dimension of the matrix) vs. a
function of n × n (the number of values in one matrix) vs. a function of 2× n × n
(the total number of values involved)
What would be a fair notion of input size?

Example: Consider an algorithm that determines whether the input N is a
prime number

Compare the running time as a function of N (the input number itself) vs. a
function of the number of digits of N
What would be a fair notion of input size?

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 8 / 9

TIME COMPLEXITY

During the course we will mostly analyze algorithms with respect to their
running time

Arguably the most significant measure of performance
Running time can vary depending on many other factors than the size of
the input, such as the power of the machine the implementation will run
on

We want a measure of performance that is independent of such factors
We will split the running time of algorithms into classes that ignore this kind
of factors (multiplicative or additive constants)⇒ time complexity
We will further analyze the time complexity of an algorithm as the input size
keeps increasing indefinitely⇒ asymptotic time complexity

The running time of many algorithms depends of the particular instance
the algorithm runs on, so one may consider

worst-case time complexity (used the most often)
average-case time complexity (used sometimes)
best-case time complexity (not very meaningful, rarely used if ever)

Amortized complexity determines the running time an algorithm is
statistically likely to need (under various definitions of “likely”)

Most useful for operations over data structures and also online algorithms

Introduction to the Design and Analysis of Algorithms (S. D. Bruda) CS 317, Fall 2024 9 / 9

