ANALYZING NON-RECURSIVE ALGORITHMS

@ To find the running time all we have to do is count steps, carefully
@ Examples:
e fori=1T0ndo o(r?)

j1
while j < /do

Counting Steps and Recurrence Relations

j—j+1
e fori=1T0 ndo O(nlogn
Stefan D. Bruda o (nlog n)
while j > 1 do

jj/2
@ algorithm BINSEARCH(x, S, /, h):
i1
j<h
while i < jdo
m« (i+))/2
if Sy = x then return m
elseif Sy > xthenj + m—1
else i« m+1

| return —1
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SOLVING RECURRENCE RELATIONS

ANALYZING RECURSIVE ALGORITHMS

@ Counting steps in a recursive algorithm produces a recurrence relation

o algorithm BINSEARCH(x, S, /, h): /1 T(n) @ Technically all the techniques below produce guesses
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if / > hthen return -1
else
m« (I+ h)/2
if x == Sy then return m
else if x < Sy then return BINSEARCH(x, S, [, m—1) // T(n/2)

else return BINSEARCH(x, S, m+ 1, h) /I ' T(n/2)

_Jec n=1 T(n)=T(n/2)+1
T(")—{ T(nj2)+¢ n>1 T(1) = 1
@ algorithm MERGESORT(S, /, h):  // T(n)
if /| > hthen m « (I + h)/2 T(m =2T(n/2) +n
i +— _
MERGESORT(/, m) /I T(n/2) T(1) =1
MERGESORT(m + 1, h) /1 T(n/2)
MERGE(/, m, h) /I O(n)

@ T(n)=2T(n—1)+1,T(1) =1 (towers of Hanoi)
@ T(n)=5T(n—1)—6T(n—2)+1,T(0)=5,T(1)=7
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o All guesses must be verified by induction
@ Induction
o Calculate a few values until able to make an educated guess
@ Forward substitution
@ Obtain T(n) for a few values without performing the calculations
o See if a series emerge and guess the general form
@ Backward substitution
o Expand T(n) repeatedly without performing the calculations
o See if a series emerge and guess the general form
@ Summing factors

o Write down the formulae for n,n—1, n— 2, etc. (or n, n/2, n/4, ...) and
add them up together

o Simplify the sum, hopefully reaching a

o See if a series emerge for T(n) and guess the general form
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CHARACTERISTIC EQUATION

SOLVING RECURRENCE RELATIONS USING THE
CHARACTERISTIC EQUATION

Definition (homogeneous linear recurrence)

A recurrence of the form apt, + aith—1 + a@lh—2 + - - - + akth_x = 0 where k
and a; are constants is called a homogeneous linear recurrence equation

Definition (characteristic equation)

The characteristic equation for the homogeneous linear recurrence equation
oty + ayth—1 + a2+ -+ akty_x =0is
aor* +airk' +aprk2 4 ... 4+ gr°=0

Theorem (solution of a homogeneous linear equation)

Let apty + aity—1 + aoth_2 + - - - + axtn_x = 0 be a homogeneous linear
recurrence equation. If the characteristic equation of this relation has k

distinct solutions ry, r», ..., I, then the only solution to the recurrence relation
isty=cyrf +cord + -+ ckryf

v
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SOLVING RECURRENCE RELATIONS USING THE
CHARACTERISTIC EQUATION (CONT’D)

@ Note in passing: recall that the solutions of the quadratic equation
ax? 4+ bx+c=0are

_ —b+vb?—4ac

N 2a

@ Example: T(n)=T(n—1)+ T(n—2),T(0) = T(1) =1 (Fibonacci
sequence)

Characteristic equation: r" — r"~' — "2 =0

Thatis, > —r—1=0

Solve as a quadratic equation: r1 > = (1 ++/5)/2

From the base cases ¢i + ¢, = 1 and ¢i(1 ++/5)/2 + c2(1 — v/5)/2 = 1

Therefore ¢12 = (vV5+1)/(2V5)

That is: ;
_V5+1 (1 +\@)
- 2v5 2

o Not terribly illuminating. . .

X1,2

V5 —1 (1-%)”

T(n) W 5
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a%!

@ We obtain r from the characteristic equation and then we can determine
the constants c¢; from the base case(s)

@ Example: T(n)=2T(n—1),T(1) =1

Rewrite inductive case as a linear recurrence: t, — 2f,—1 =0

o Characteristic equation: r —2 =0

@ Solve equation, obtaining r = 2

o Therefore we have T(n) = ¢2"

"]

"]

From the base case we have T(1) = ¢;2' = 1 and thus ¢ = 1/2
Therefore T(n) = 2" = O(2")
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CHARACTERISTIC EQUATION WITH MULTIPLICITY

%

@ A solution of an equation is said to have multiplicity mif it appears m
times in the list of solutions to that equation
e For example the equation (r — 2)(r — 5)* = 0 has the solutions r; = 2 with
multiplicity 1 and r» = 5 with multiplicity 3

Theorem (homogeneous linear recurrence with multiplicity)

Let r be a root of multiplicity m of the characteristic equation for a
homogeneous linear recurrence. Then t, = nr", 0 < k < m are all solutions
to the recurrence and so much be included in the general solution.

@ That is, a solution r with multiplicity k will contribute the following to t,:
con®r™ +cin'r" 4 - Cpgn™ 11"
o Example: th—7th 1 +15t,_ 20— 9, 3=0,60=0,4 =1, 6, =2
o Characteristic equation: r* —7r> + 15r —9 =0
e Thatis, (r — 1)(r —3)> =0 and so ry = 1 (multiplicity 1) and r, = 3
(multiplicity 2)
o Therefore the general solution is t, = ¢11” + 3" + ¢c3n3”
o From the base caseswe have ¢y = -1, cc =1,¢c3=1/3
e Therefore t, =3" — n3"~' —1
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NON-HOMOGENEOUS LINEAR RELATIONS +- | DOMAIN TRANSFORMATION

@ General form: apt, + a1ty—1 + @th—2 + - - - + akts_x = f(n)
o No known method to solve them
@ Special case: apty + aith—1 + @th_o + -+ -+ akth_x = b"p(n), with b
constant and p(n) a polynomial in n
@ Can be transformed into a homogeneous linear recurrence

@ Sometimes we do not have a linear recurrence because the indices are
nowhere near each other

o Example: th— 3ty 1 — 4"t = 0,1, — 4 @ We may be able to bring the indices closer using a change of variable
o Replace nwithn—1: t,_y — 3t,_» = 4" e Most common change of variable: from n to 2%

o Divide the original by 4: 1/4t, — 3/4t,_1 = 4"~" @ Do not forget to change the variable back when done

o Subtract the second version from the first: 1/4t, — 7/4t,_1 + 3ti_2 = 0 o Example: T(n) =2T(n/2) +1,T(1) =0

e Homogeneous linear recurrence! © Would resultin th = t,/2 + 1, not linear

@ However nand n/2 are near each other on a logarithmic scale

_ f @ Sowe let n = 2 (and so k = log n) and we have: T(2kK) = 2T(2k—1) + 1
Theorem (Non-homogeneous transformation) o With & = T(2) we have: f, = o~ + 1
A non-homogeneous linear recurrence of the form ® Notethatfy = T(20) =0and t; =2ty +1 =1 . B} .
aoly + arty_1 + asth_o + - + aty_k = b"p(n) can be transformed into an o We glready know how to sol\_/e that, and we obtain tx = ¢12* + c»1
, , f , L. @ Solving for ty and t; we obtain ¢; =1 and ¢, = —1
equivalent homogeneous linear recurrence with the following characteristic ® Soty=2k—1
equation: (aork + a;rk=" + axrk=2 4+ ... + a,r%)(r — b)9+" = 0, where d is the @ Finally change the variable back to n by replacing k with log n:

degree of p(n) th=T(n)=n—1

@ Two sets of solutions, one from the homogeneous part and the other from
the non-homogeneous part
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RANGE TRANSFORMATION

@ Sometimes we do not have a linear recurrence because terms are
combined using multiplication

@ We may be able to change multiplication into addition by applying an
operation on both sides

@ Indeed, logax b=loga+ logb
e Example: t, =32, = 1
@ Not linear because of £2_,
@ Apply log to convert the exponent into a multiplicative constant:
log th = log3 4+ 2log t,_1,log fy = log 1
@ Let bp = log th SO we have: by = 2b,_1 +log3, by = 0,b; = 2by + log 3 = log 3
@ Linear recurrence!
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