Data Structures

Stefan D. Bruda

CS 317, Fall 2024

DATA STRUCTURES RECAP (CONT’D)

@ Trees: simple connected graph, one vertex may be designated as root
o For a graph T with n vertices the following statements are equivalent:

@ Tisatree

@ T is connected and acyclic

@ T is connected and has n — 1 edges
@ T is acyclic and has n — 1 edges

o Concepts: parent, ancestor, child, descendant, sibling, leaf, internal note
@ Binary tree: each node had at most two children (left and right)

o In a binary tree of height h with n nodes we have h > log, n (or n < 2"
@ Binary tree traversals (O(n) complexity):

algorithm PREORDER(T): algorithm INORDER(T): algorithm POSTORDER(T):

if ~EMPTY(T) then if -EMPTY(T) then if -EMPTY(T) then
VISIT(T) INORDER(LEFT(T)) POSTORDER(LEFT(T))
PREORDER(LEFT(T)) VISIT(T) POSTORDER(RIGHT(T))
PREORDER(RIGHT(T)) INORDER(RIGHT(T)) VISIT(T)

@ Binary search tree: the value in every vertex is larger than all the values
in its left subtree and smaller than all the values if its right subtree
@ Operations: insert, delete, search (O(n) worst case, O(log n) if the tree is
balanced)
o Inorder traversal yields sorted sequence

Data Structures (S. D. Bruda) CS 317, Fall2024 2/12

DATA STRUCTURES RECAP

@ Stack (FILO): push, pop, empty — constant time
@ Queue (FIFO): insert, delete, empty — constant time
@ Heaps: implementation of priority queue

o Operations: insert (O(log n)), peek (highest priority, O(1)), delete (highest

priority, O(log n))

o Tree representation, with children values smaller (maxheap) or larger
(minheap) than the vertex value (weakly sorted)

o Most efficiently implemented using arrays

o Efficient sorting (heapsort)

Data Structures (S. D. Bruda) CS 317, Fall 2024

DISJOINT SETS

@ Disjoint sets are non-empty, pairwise disjoint sets
o Disjoint sets X, 1 < i< nm:
VI<i<n:Xi#0 A VI1<ij<ni#j:XnX#0
o Each set has a member designated as the representative of that set
@ Operations:

o MAKESET(/): construct a set containing / as its sole element
o FINDSET(/): return the representative of the set containing i

1/12

@ UNION(/, j): replaces the two sets containing / and j with their union; one of

the two set representatives becomes the representative of the new set

@ Representation: each set can be represented as a tree with the
representative in the root
o The tree does not have to be binary or balanced
@ Implementation: disjoint sets over a domain D represented as an array
parent indexed over D
o parent; hold the parent of i in the tree representation, or i if i is the root

Data Structures (S. D. Bruda) CS 317, Fall 2024

3/12

DISJOINT SETS (CONT'D)
e Example: {2,4,5,8}, {1}, {3,6,7}

Tree representation:

ONENORNENG

Array implementation:
parent =

2 3 4 5 6 7 8

(1 [4]7][5][5]7][7]5]

@ A basic implementation:

algorithm MAKESET(i):
| parent; < i

algorithm FINDSET(/):
L while parent; # i do i < parent;
return /

algorithm UNION(/, j):
X < FINDSET(/
y < FINDSET(j
if x # y then MERGETREES(X,y)

algorithm MERGETREES(/, j):
| parent; < j

Data Structures (S. D. Bruda)

DISJOINT SETS (CONT’D)

o The tree representation can
become very linear (depending on
the sequence of calls to UNION), so
the running times are as follows:

@ MAKESET: O(1)

@ FINDSET: O(n)

@ UNION: O(n) (since it calls
FINDSET)

CS 317, Fall 2024 4/12

Data Structures (S. D. Bruda)

DISJOINT SETS (CONT’D)

@ Weigthed union: To maintain a smaller tree height for the union we
decide what tree gets the root based on the heights of the operands
@ Maintain a height for each set (tree)
@ During union the tree with the smallest height is attached to the root of
the set with the larger height
@ The height stays the same
@ When the two operands have the same height attach one to another (no
matter which, but consistently)
@ The height increases by one
o Overall for every two sets joined we have a height increase of at most one so
no height in the tree is going over log n
o Better running times:
@ MAKESET: O(1)

@ FINDSET: O(log n)
@ UNION: O(log n) (since it calls FINDSET)

algorithm WUNION(/, j): algorithm WMERGETREES(/, j):

X < FINDSET(/ if height; > height; then parent; < i
y FINDSET(j else
if x # y then WMERGETREES(X,y) parent; + j
if height; = height; then
| height; < height; + 1

@ Collapsing find: Each time we call FINDSET we collapse all the nodes we
traverse so that they become connected directly to the root

algorithm CFINDSET(i):

L if i # parent; then parent; <— CFINDSET(parent;)

return parent;

@ When using weighted union alone n MAKESET and m WUNION/FINDSET

takes O(n + mlog n) time

@ When using weighted union and collapsing find n MAKESET and m
WUNION/CFINDSET takes O(n+ m+ «(n, m)) time where a(n, m) is a

constant for all practical purposes

n MAKESET +
MAKESET(/) FIND(/) UNION(/,j) m UNION/FIND
Basic impl. o(1) O(n) O(n) O(n+ nm)
Weighted union o(1) O(log n) O(log n) O(n+ mlogn)
Weighted union + o(1) O(logn) O(logn) ~ O(n+m)

collapsing find

Data Structures (S. D. Bruda)

CS 317, Fall 2024 6/12

Data Structures (S. D. Bruda)

@ Directed graph (digraph): G = (V, E) where V is a set of vertices and
E C V x Vs the set of edges
o In a graphical representation edges are shown as arrows between vertices
@ Undirected graph: A graph G = (V, E) with the additional property that
(u,v) e Eiff (v,u) e E
o In a graphical representation edges are shown as lines between vertices
@ Weighted graph: G = (V, E,w) where (V,E)isagraphand w: E - R
associates a weight to each edge
o In a graphical representation weights are shown as edge labels
@ Concepts related to graphs:
adjacent vertices, degree, in degree, out degree
complementof G=(V,E): G' = (V,V x V\ E)
path, simple path, cycle, simple cycle
acyclic graph
length of the shortest path from u to v: DIST(u, v)
diameter of G = (V, E): DIAM(G) = max{DIST(u,Vv) : u,w € V}
subgraph: a subset of edges along with all their vertices
induced subgraph: contains all the edges between its vertices
Hamiltonian cycle: cycle that contains each vertex exactly once
Euler cycle: cycle that contains each edge exactly once

CS 317, Fall 2024 5/12

CS 317, Fall 2024 7/12

MORE TYPES OF GRAPHS

Connected nconnected

@ (Strongly) connected graph: graph that (b)
has a path between each pair of vertices

o For a connected graph G = (V, E) what A
is the minimum and the maximum |E| (in
terms of | V[)?

@ Weakly connected graph: directed graph ~ Strongly Weakly
that is not connected but becomes connected: connected:
connected if we transform it into an (a)—(b) (@—(b)
undirected graph “

o No concept of weak connectivity for (c)—{a) ()—{d)—e)
undirected graphs (they are either
connected or not)

. Complete

@ Clique or complete graph: G = (V,V x V) Bipartite: bipartite

@ Sparse vs dense graphs (a) (4)
@ Bipartite graph: G = (V4 & Vz, E) such Q(Q'(
©

that EC Vj x Vo U Vo x V4
o Complete bipartite graph:
G:(\AH'JV2,V1><V2UV2XV1) 0

Data Structures (S. D. Bruda)

GRAPH TRAVERSAL

algorithm LISTTRAVERSE(v € V):

open «+ (v)

visity < true

while open # () do
u < HEAD(open)
Output u
new < (x : (u,x) € E A —visitedy)
foreach x € new do visity < true
open < REST(open) & new

algorithm TRAVERSE(G
foreach v € V do
| visit, + false
Let v € V such that visit, = false
if v exists then
| LISTTRAVERSE(V)

= (V. E)):

Two different variants of @ yield two different traversals:
@ Breath-firsttraversal: L' @ L = L'+ L"
o New vertices are added at the end and so open implements a queue
@ Depth-firsttraversal: L' ® L = L" + L’
o New vertices are added at the beginning and so open implements a stack
o Depth-first traversal can also be implemented recursively:

algorithm DFS(G = (V, E)):
L foreach v € V do visit, + false

algorithm RECDFS(v € V):
Output v
visity + true
foreach (v, u) € E A —visity do
| RECDFS(u)

Let v € V such that visit, = false
if v exists then RECDFS(v)

Data Structures (S. D. Bruda)

CS 317, Fall 2024 8/12

CS 317, Fall 2024 10/12

GRAPH REPRESENTATION

@ Adjacency matrix
e For G = (V, E) establish an (arbitrary) order over V, such that we can
consider V = {0,1,...,n}
e Then G can be represented as the binary matrix (Gj)o<i,j<» such that
Gy=1iff(i,j)e E

e Foraweighted G = (V, E,w) set Gj = w(i,j) if (i,j) € Eand Gj = o

otherwise
Undirected: Directed: Weighted:

a b c d e a b c d e a b c d e
a 0 1 1 1 0 a 0 0 0 1 0 a oo 5 2 1 oo
b 1 0 0 0 1 b 1 0 0 0 0 b 5 oo =) =) 8
c 1 0 0 1 0 [1 0 0 1 0 C 2 =) =3 2 =)
d 1 0 1 0 0 d 0 0 0 0 0 d 1 oo 2 oo oo
e 0 1 0 0 0 e 0 1 0 0 0 e oo 8 oo oo oo

@ Adjacency list: For each vertex v use a list with exactly all the vertices
such that (v,u) € E
o Include the weights if it is a weighted graph

[@a]| b—c—d 4>d [@a | —-b5—c2—d1
[b] —a—e — a [6] —ab—es8
—a—d ~>a~)d [c] —a2—=4d2

—a—c [d] —at1t—c2
Ce b e [e] —os

@ Time/space efficiency?

Data Structures (S. D. Bruda) CS 317, Fall 2024

GRAPH TRAVERSAL (CONT'D)

@ Any traversal of a graph G avoids all edges that would result in cycles

@ Therefore it only expands (and thus defines) an acyclic subgraph of G
= the traversal (DFS or BFS) tree

0‘0 ©

o Same traversal output starting from a: a,c,d, b, e
o Different traversal trees:

BFS tree: DFS tree:

Lo b Lo d

@ Both algorithms run in time O(n + m)
@ Space requirements however are vastly different

Data Structures (S. D. Bruda) CS 317, Fall 2024

u

9/12

11/12

TOPOLOGICAL SORTING ON DIRECTED GRAPHS

Data Structures (S. D. Bruda)

@ Given a graph G = (V, E), obtain a linear ordering of V such that for
every edge (u, v) € E, u comes before v in the ordering

algorithm TSORT(G = (V, E)):

order « () @ Many practical applications, e.g.

S«V ; L.

while S 0 do sorting over a course prerequisite
Let v € S with in-degree 0 structure

order < order + (V)
E« E\{(v.u) < E} (310)
V+—V\v

Igorithm TSORT' (G = (V, E)):

order < ()

k< n

foreach v € V do visit, + false

while 3v € V : visit, = false do
| RECTOPO(V)

[\

Igorithm RECTOPO(v € V): Possible order:

visit, < true '

foregch (v. 1) € E A ~visity do (211,310,321, 201,304, 403,317,216,311, 409)
| RECTOPO(u)

orderg < v
|l k< k-1

CS 317, Fall 2024 12/12

