Stefan D. Bruda

CS 317, Fall 2024

- Stack (FILO): push, pop, empty constant time
- Queue (FIFO): insert, delete, empty constant time
- Heaps: implementation of priority queue
 - Operations: insert (O(log n)), peek (highest priority, O(1)), delete (highest priority, O(log n))
 - Tree representation, with children values smaller (maxheap) or larger (minheap) than the vertex value (weakly sorted)
 - Most efficiently implemented using arrays
 - Efficient sorting (heapsort)

DATA STRUCTURES RECAP (CONT'D)

- Trees: simple connected graph, one vertex may be designated as root
 - For a graph *T* with *n* vertices the following statements are equivalent:
 - T is a tree
 - T is connected and acyclic
 - T is connected and has n-1 edges
 - T is acyclic and has n-1 edges
 - Concepts: parent, ancestor, child, descendant, sibling, leaf, internal note
- Binary tree: each node had at most two children (left and right)
 - In a binary tree of height *h* with *n* nodes we have $h \ge \log_2 n$ (or $n \le 2^h$)
 - Binary tree traversals (O(n) complexity):

- Binary search tree: the value in every vertex is larger than all the values in its left subtree and smaller than all the values if its right subtree
 - Operations: insert, delete, search (*O*(*n*) worst case, *O*(log *n*) if the tree is balanced)
 - Inorder traversal yields sorted sequence

DISJOINT SETS

Data Structures (S. D. Bruda

- Disjoint sets are non-empty, pairwise disjoint sets
 - Disjoint sets X_i , $1 \le i \le n$:
 - $\forall 1 \leq i \leq n : X_i \neq \emptyset \quad \land \quad \forall 1 \leq i, j \leq n, i \neq j : X_i \cap X_j \neq \emptyset$

• Each set has a member designated as the representative of that set

- Operations:
 - MAKESET(*i*): construct a set containing *i* as its sole element
 - FINDSET(*i*): return the representative of the set containing *i*
 - UNION(*i*, *j*): replaces the two sets containing *i* and *j* with their union; one of the two set representatives becomes the representative of the new set
- Representation: each set can be represented as a tree with the representative in the root
 - The tree does not have to be binary or balanced
- Implementation: disjoint sets over a domain *D* represented as an array *parent* indexed over *D*
 - *parent_i* hold the parent of *i* in the tree representation, or *i* if *i* is the root

DISJOINT SETS (CONT'D)

• Example: $\{2, 4, \underline{5}, 8\}, \{\underline{1}\}, \{3, 6, \underline{7}\}$ Tree representation: Array implementation:

while $parent_i \neq i$ do $i \leftarrow parent_i$ return *i*

algorithm UNION(i, j): $x \leftarrow FINDSET(i)$ $y \leftarrow FINDSET(j)$ if $x \neq y$ then MERGETREES(x, y)algorithm MERGETREES(i, j):

parent_i \leftarrow j

Data Structures (S. D. Bruda)

```
    The tree representation can
```

3 4 5 6 7 8

7 5 5 7 7 5

become very linear (depending on the sequence of calls to UNION), so the running times are as follows:

- MAKESET: *O*(1)
- FINDSET: O(n)
- UNION: O(n) (since it calls FINDSET)

DISJOINT SETS (CONT'D)

- Weigthed union: To maintain a smaller tree height for the union we decide what tree gets the root based on the heights of the operands
- Maintain a height for each set (tree)
- During union the tree with the smallest height is attached to the root of the set with the larger height
 - The height stays the same
- When the two operands have the same height attach one to another (no matter which, but consistently)
 - The height increases by one
 - Overall for every two sets joined we have a height increase of at most one so no height in the tree is going over log *n*
 - Better running times:
 - Макезет: *О*(1)
 - FINDSET: O(log n)
 - UNION: O(log n) (since it calls FINDSET)

algorithm WUNION(*i*, *j*):

 $x \leftarrow Findset(i)$ $y \leftarrow Findset(j)$ **if** $x \neq y$ **then** WMergetrees(x,y)

Data Structures (S. D. Bruda)

CS 317, Fall 2024 5 / 12

DISJOINT SETS (CONT'D)

 Collapsing find: Each time we call FINDSET we collapse all the nodes we traverse so that they become connected directly to the root

algorithm CFINDSET(*i*): if $i \neq parent_i$ then $parent_i \leftarrow CFINDSET(parent_i)$ return $parent_i$

- When using weighted union alone n MAKESET and m WUNION/FINDSET takes O(n + m log n) time
- When using weighted union and collapsing find *n* MAKESET and *m* WUNION/CFINDSET takes $O(n + m + \alpha(n, m))$ time where $\alpha(n, m)$ is a constant for all practical purposes

				<i>n</i> Makeset +
	Makeset(i)	Find(<i>i</i>)	Union(<i>i</i> , <i>j</i>)	<i>m</i> Union/Find
Basic impl.	<i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n + nm)
Weighted union	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	$O(n + m \log n)$
Weighted union + collapsing find	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	$\approx O(n+m)$

GRAPHS

 Directed graph (digraph): G = (V, E) where V is a set of vertices and E ⊆ V × V is the set of edges

• In a graphical representation edges are shown as arrows between vertices

• Undirected graph: A graph G = (V, E) with the additional property that $(u, v) \in E$ iff $(v, u) \in E$

• In a graphical representation edges are shown as lines between vertices

- Weighted graph: G = (V, E, w) where (V, E) is a graph and $w : E \to \mathbb{R}$ associates a weight to each edge
 - In a graphical representation weights are shown as edge labels
- Concepts related to graphs:
 - adjacent vertices, degree, in degree, out degree
 - complement of G = (V, E): $G' = (V, V \times V \setminus E)$
 - path, simple path, cycle, simple cycle
 - acyclic graph
 - length of the shortest path from u to v: DIST(u, v)
 - diameter of G = (V, E): DIAM $(G) = \max\{\text{DIST}(u, v) : u, w \in V\}$
 - subgraph: a subset of edges along with all their vertices
 - induced subgraph: contains all the edges between its vertices
 - Hamiltonian cycle: cycle that contains each vertex exactly once
 - Euler cycle: cycle that contains each edge exactly once

MORE TYPES OF GRAPHS

- (Strongly) connected graph: graph that has a path between each pair of vertices
 - For a connected graph G = (V, E) what is the minimum and the maximum |E| (in terms of |V|?
- Weakly connected graph: directed graph that is not connected but becomes connected if we transform it into an undirected graph
 - No concept of weak connectivity for undirected graphs (they are either connected or not)
- Clique or complete graph: $G = (V, V \times V)$
- Sparse vs dense graphs
- Bipartite graph: $G = (V_1 \uplus V_2, E)$ such that $E \subset V_1 \times V_2 \cup V_2 \times V_1$
 - Complete bipartite graph: $G = (V_1 \uplus V_2, V_1 \times V_2 \cup V_2 \times V_1)$
- -(b (a)+ (b (c ` d Complete **Bipartite:** bipartite:

Unconnected:

Weakly

connected:

(e`

(e

8 / 12

- Adjacency matrix
 - For G = (V, E) establish an (arbitrary) order over V, such that we can consider $V = \{0, 1, ..., n\}$
 - Then G can be represented as the binary matrix $(G_{ij})_{0 \le i,j \le n}$ such that $G_{ii} = 1$ iff $(i, j) \in E$
 - For a weighted G = (V, E, w) set $G_{ii} = w(i, j)$ if $(i, j) \in E$ and $G_{ii} = \infty$ otherwise

Undirected: Dir							
		а	b	c	d	е	
	а	0	1	1	1	0	á
	b	1	0	0	0	1	t
	С	1	0	0	1	0	6
	d	1	0	1	0	0	0
	е	0	1	0	0	0	e

Weighted:										
•	c	d	e			а	b	с	d	e
	0	1	0	1	а	∞	5	2	1	∞
1	0	0	0]	b	5	8	8	∞	8
	0	1	0		С	2	∞	∞	2	∞
	0	0	0]	d	1	8	2	8	8
	0	0	0		е	∞	8	∞	∞	∞

• Adjacency list: For each vertex v use a list with exactly all the vertices u such that $(v, u) \in E$

Include the weights if it is a weighted graph

Time/space efficiency?

Data Structures (S. D. Bruda

Data Structures (S. D. Bruda

Graph traversal

algorithm TRAVERSE(G = (V, E)): foreach $v \in V$ do | visit_v \leftarrow false Let $v \in V$ such that $visit_V =$ false if v exists then LISTTRAVERSE(v)

algorithm LISTTRAVERSE($v \in V$): open $\leftarrow \langle v \rangle$ *visit* $\downarrow \leftarrow$ true while open $\neq \langle \rangle$ do $u \leftarrow \mathsf{HEAD}(open)$ Output u $new \leftarrow \langle x : (u, x) \in E \land \neg visited_x \rangle$ foreach $x \in new$ do visit_x \leftarrow true $open \leftarrow REST(open) \oplus new$

Connected:

Strongly

ά

connected:

a

Two different variants of \oplus yield two different traversals:

- Breath-first traversal: $L' \oplus L'' = L' + L''$
 - New vertices are added at the end and so open implements a queue
- Depth-first traversal: $L' \oplus L'' = L'' + L'$
 - New vertices are added at the beginning and so open implements a stack
 - Depth-first traversal can also be implemented recursively:

algorithm DFS(G = (V, E)): foreach $v \in V$ dò *visit* \leftarrow false Let $v \in V$ such that $visit_v =$ false if v exists then RECDFS(v)

algorithm RECDFS($v \in V$): Output v *visit* $\downarrow \leftarrow$ true foreach $(v, u) \in E \land \neg visit_u$ do RECDFS(u)

GRAPH TRAVERSAL (CONT'D)

- Any traversal of a graph G avoids all edges that would result in cycles
- Therefore it only expands (and thus defines) an acyclic subgraph of G = the traversal (DFS or BFS) tree

- Same traversal output starting from a: a, c, d, b, e
- Different traversal trees:

- Both algorithms run in time O(n+m)
- Space requirements however are vastly different

 Given a graph G = (V, E), obtain a linear ordering of V such that for every edge (u, v) ∈ E, u comes before v in the ordering

algorithm TSORT($G = (V, E)$): order $\leftarrow \langle \rangle$ $S \leftarrow V$ while $S \neq \emptyset$ do Let $v \in S$ with in-degree 0 order \leftarrow order $+ \langle v \rangle$ $E \leftarrow E \setminus \{(v, u) \in E\}$ $V \leftarrow V \setminus v$	 Many practical applications, e.g. sorting over a course prerequisite structure
algorithm TSORT'($G = (V, E)$): order $\leftarrow \langle \rangle$ $k \leftarrow n$ foreach $v \in V$ do $visit_v \leftarrow$ false while $\exists v \in V : visit_v =$ false do $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
algorithm RECTOPO($v \in V$):visit _v \leftarrow trueforeach $(v, u) \in E \land \neg visit_u$ do $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Possible order: 〈211, 310, 321, 201, 304, 403, 317, 216, 311, 409〉
Data Structures (S. D. Bruda)	CS 317, Fall 2024 12 / 12